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Abstract 
The direct pairwise calculation of the potential/electric 

fields created by a very large number of particles is 
computationally impractical since it requires a long run 
time and a large amount of memory. The Fast Multipole 
Method (FMM) is a fast algorithm, which scales linearly 
with the number of particles and it enables highly 
accurate evaluation of the potentials and fields among 
the large number of particles using less memory 
compared to some other fast methods. The FMM has two 
main forms, non-adaptive and adaptive. The former is 
suitable for uniform distributions while the latter is more 
efficient for non-uniform distributions typically 
encountered in beam physics. This paper presents an 
implementation of a novel 3D adaptive FMM algorithm 
and some results obtained from simulations performed 
with non-uniform particle distributions. 

INTRODUCTION 
Pairwise calculation of Coulomb interaction is not 

feasible when the number of particles becomes very large 
since the computational complexity is of the order O(N2). 
The FMM shows great promise to diminish the 
computational cost to O(N). The FMM can be split into 
two parts, data structuring and the calculation of the 
potential or the field. The former was discussed in 
previous papers [1, 2]. This paper concentrates on the 
implementation of the FMM to calculate the potential and 
fields at prescribed target points. In our analysis we use 
homogeneous and inhomogeneous distributions of source 
and target points. Therefore, instead of the regular FMM 
we use the adaptive FMM because it can cater to both 
types of distributions. 

For data structuring, we have used an octree data 
structure, and the code is written in C++. For calculating 
the potential, the FMM is used and the code is written in 
the differential algebraic-methods-based COSY Infinity 
[3]. In data structuring we use certain unique capabilities 
available in C++ such as bit (de)interleaving and dynamic 
memory management, which are not available in COSY 
Infinity. Another advantage of C++ over COSY Infinity is 
that it is somewhat faster. 

We measured the total run-time, which consists of the 
time taken for data structuring and for the calculation of 
the potential. The time taken for data structuring is a small 
fraction of the run-time, and in our previous paper we 
have shown that it scales linearly with the number of 
particles, if that number is large enough  [3]. In Figure 5, 

we show that the total run-time for the FMM also linearly 
scales with the number of particles. 

ALGORITHM 
For details on the structure and implementation of the 

algorithm to create our data structures is described in [2]. 
When the data structure is ready, the next step is to run 
the FMM proper. There are two major parts in the FMM 
used to calculate the potential: the upward pass and the 
downward pass. 

Upward Pass 
We start the upward pass at the finest level, or the 

highest level, of each tree. The upward pass consists of 
two steps. 

 Step 1: For each tree, calculate the multipole 
expansions of all leaf nodes at the finest level 
around their centers. 

 Step 2: Multipole-to-multipole (M2M) shift. 
Advance to the next lower level or the parent level 
of the finest level by combining child nodes and 
then compute the multipole expansion of the parent 
box around its center by adding the multipole 
expansions of child nodes around their centers.  

Repeat this step until level two is reached. 

Downward Pass 
The downward pass consists of three steps. 

 Step 1: Start at level 2 and do a multipole-to-local 
(M2L) shift for each box. The local expansion of a 
particular box around its center is computed from 
the multipole expansions of the boxes belonging to 
the interaction list of that box. 

In our results, we noticed that this transformation takes 
a considerably longer amount of time compared to other 
steps in the algorithm. By rotating the coordinate system 
of the box in such a way that the z-axis of the box aligns 
with the line joining the centers of the box and the 
interaction list boxes, the 3D transformation of the M2L 
becomes a 1D transformation. Hence, we can significantly 
reduce the M2L transformation time.  

 Step 2: Move to the next finer level or to the level of 
child nodes and compute the local expansion of 
child nodes around their centers from the multipole 
expansions of the boxes belong to the interaction list 
of the child nodes. 

 Step 3: Re-expand the result in step 1 and compute 
the contribution from the local expansion of the 
parent box, which is known as the local-to-local 
(L2L) shift, and add that result to the result 
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obtained in step 2. 
The above three steps should be repeated until the 

coarsest level, level two, is reached. 
With the completion of the above described upward 

pass and downward pass, all target boxes at the finest 
level have their local expansions due to all the sources 
outside the neighborhood of each target box. 

Final Summation 
 Step 1: Point-to-point (P2P) calculation. In order to 
get the potential at targets, evaluate the local 
expansion around the center of each target box at 
each target point in the box.  

 Step 2: To get the total potential, calculate the 
potential at each target due to the sources in the 
neighborhood and add it to the potential evaluated 
in step 1. 

Also, calculate the electric fields at each target by 
taking the derivative of the potential at the point. 

We note that all steps, except the point-to-point piece of 
step 1 in the final summation, are performed 
automatically by differential algebraic methods as detailed 
in [3]. 

                   EXAMPLES 
As examples, we present some cases of source points 

generated by three different distributions: uniform, single 
3D Gaussian, and nine 3D Gaussians. We placed the

 

target points in a uniform two dimensional grid spanning
 

[-3, 3] in x and y directions, with z=0 (a cross-section 
centered on the source distributions). We assumed, for 
simplicity, that each target and source particle carries a 
unit charge. 

The number of sources and targets are 45000 and 2401, 
respectively. The order of FMM in all three examples is 9. 

Example 1 
The source points are uniformly distributed in a cube in 

the range [-1, 1] in all three directions x, y, z. The 
potentials were calculated in both FMM and point-to-
point, or direct methods. Figure 1 shows that the relative

 

errors of the FMM method is very small and therefore,

 
 

 

 
Figure 1: Histogram of the relative errors of the FMM 
calculated for the potential due to uniformly distributed 
sources in a cube. 
 
 
can replace the direct method for most practical 
applications. The potential determined from the FMM is 
plotted in Figure 2. 

Example 2 
 Source points are distributed as a single round 3D 

Gaussian. Targets were in the same uniform grid as the 
previous example. The potential is plotted in Figure 3.  

Example 3 
 Source points are from a distribution of nine 3D 

Gaussians. Again, targets were on the same uniform grid. 
The 3D potential is plotted in Figure 4. The error 
histograms for examples 2 and 3 are very similar to Figure 
1. 

By varying the particle number N, the run time is 
measured, under optimized conditions specific to the data 
structures, distributions and order used, for Gaussian and 
uniform distributions using the FMM at order 2. Both 
types of distributions show that the run time is linear with 
the particle number N.  

The run time for Gaussian distribution is slightly higher 
than that of the uniform distribution.  

 
Figure 2: 3D plot (on the left) and contour plot (on the right) of potential (a.u.) due to uniformly distributed sources in a 
cube. 
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Figure 3:  3D plot  and contour plot  of potential due to sources distributed as a single 
round Gaussian. 

 (on  the  left)  (on  the   right)  (a.u) 

 

 
Figure 4: 3D plot  (on the left) and contour plot  (on the right) of potential  (a.u.)  due to sources distributed as a grid of 
nine 3D Gaussians. 

    

 
 

 
Figure 5: Run-time measured for different particle 
numbers N at the FMM order 2. 

SUMMARY 
We have implemented the FMM to calculate the 

potential generated by three types of source particle 
distributions at uniformly distributed targets on a 2D grid. 

The error histogram shows that the potential calculated 
using the FMM agrees very well with the potential 
calculated using the direct pairwise method. A higher 
FMM order produces more accurate calculations. In 
addition, as the name implies, the FMM calculation is fast 
since the FMM runtime is significantly less than that of 

the direct method. In Example 1, at the optimum q value 
for N=8000, the measured runtime for the FMM is 0.73 
minutes while that for the direct method is 2.68 minutes. 
Therefore, we have shown that the FMM can be utilized 
for accurate and fast potential/field calculation 
irrespective of the type of particle distributions. 
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