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Abstract
A brief rerview is presented of the various schemes

which have been proposed for removing shot noise from

a beam that will be used as a driver for a free electron laser.

Attention is focused on just one of these schemes; namely

that proposed in Ref. [1]. We begin with a general discus-

sion of shot noise properties and their mathematical for-

mulation. An analysis is developed which expresses noise

suppression in terms of the longitudinal impedance in the

region where interaction is taking place. The impedances

of a number of different interaction regions are presented

with numerical examples that demonstrate their efficacy for

noise suppression. Comments are made about the applica-

tion of noise suppression to real systems.

INTRODUCTION
In a beam of randomly distributed particles, the longitu-

dinal density exhibits uncorrelated fluctuations, commonly

called shot noise. In free electron lasers (FEL), shot noise

provides the start-up radiation for Self-Amplified Spon-

taneous Emission (SASE). There are situations, however,

where the same density fluctuations may adversely affect

FEL operation. For example, the microbunching instability

incapacitates diagnostics of the beam and can lead to degra-

dation of the FEL performance [2–7]. In seeded FELs shot

noise competes with external modulations of the beam be-

ing amplified in the process of the seeding [8, 9]. In these

situations suppression of the shot noise in the beam would

lead to improved performance of the FEL and allow for a

lower seed power in seeded machines. Suppressing shot

noise could also allow controlling instabilities and increas-

ing efficiency in cooling relativistic beams [10]. Suppres-

sion of shot noise is the subject of this paper.

Suppression of long wavelength shot noise was observed

in microwave tubes as early as the 1950s, [11]. In the

last few years, several groups have independently proposed

suppressing shot noise at short wavelengths in relativistic

electron beams [1, 12–14]. The first experimental observa-

tion of shot noise suppression at sub-micron wavelengths

were recently reported in [15, 16].

We have to point out that noise suppression is not a cool-

ing of the beam. As we will show below it involves the

reactive part of the impedance associated with the particle

interactions. One can say that it transfers the shot noise

in the longitudinal (z) direction to the energy coordinate,

where it is relatively benign for applications of interest. We
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will discuss how noise suppression can improve FEL per-

formance, but also, as well, the difficulties associated with

its application.

APPROACHES TO SUPPRESS THE SHOT
NOISE

One method for shot noise suppression (also chronolog-

ically first) was presented in Refs. [12, 13] where it was

pointed out that the density fluctuations in a beam oscillate

in time with the plasma frequency. If the beam is prepared

in such initial state that there is only density fluctuation,

and no energy, or velocity, fluctuation, after a quarter of the

plasma period it will be fully converted to velocity fluctua-

tion and the initial density fluctuation disappears.

This suppression method can be useful for beam energies

that are not very large because the length required for a

relativistic beam to execute a plasma oscillation increases

with the beam energy. The beam plasma frequency, in the

laboratory frame, is

ωp = c

(
4π

γ3S

I

IA

)1/2

, (1)

where I is the beam current, IA = mc3/e ≈ 17.5 kA is the

Alfven current, and S is the transverse cross section area

of the beam. As an example, consider the following beam

parameters: beam energy 1 GeV, I = 1 kA, S = 100 μm

×100 μm, which give for the quarter plasma period length

πc/2ωp ≈ 16 m. Lower currents or higher beam energies

make this distance longer and, hence, less atractive.

Another approach, which seems more attractive in the

limit of high energies, was proposed in [1]. In this paper

we will focus only on the second approach, for it has the

promise of a more compact setup. In this approach a rela-

tively short interaction region is used followed by a disper-

sive element, see Fig. 1. Of course it is an approximation to

confine the interaction to a particular region but for concep-

tual purposes it is convenient to think this way. A complete

calculation would be needed to quantify this approach.

Beam

�shot noise�

Interaction

Dispersion

Figure 1: Schematic of noise suppression system. A beam

with shot noise is injected into an interaction region of

length L, followed a dispersion region with a proper value

of R56.
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The particles are assumed frozen at their longitudinal po-

sitions throughout the interaction region. Thus we assume

that plasma oscillations do not play a role and, since we ne-

glect plasma oscillations, we assume that the length of the

system is shorter than πc/2ωp. Particles are shifted lon-

gitudinally by passage through the dispersive element, and

this shift is controlled by the (5,6) element of the transport

matrix, R56.

Still a third method of shot noise suppression, is outlined

in Ref. [14]. It involves two wigglers, a chicane and an am-

plifier. Radiation from the first wiggler is amplified in an

optical amplifier and then recombines with the beam in the

second chicane. The interaction with this radiation, accord-

ing to [14] would lead to the noise suppression in the beam.

Since this approach is described, in detail, in another con-

tribution to this Workshop, we shall not discuss it further

here.

SHOT NOISE PROPERTIES
We consider fluctuations in the beam in the laboratory

frame of reference. The coordinate z marks the position of

a particle inside the beam (with positive z in the direction of

propagation), and η = ΔE/E0 is the relative energy devia-

tion with the nominal energy of the beam E0 = γmc2. The

1D distribution function is f0(z, η) = n0F (η) + δf(z, η)
where F (η) is the averaged distribution function normal-

ized by
∫
dηF (η) = 1, and n0 is the averaged line density

of the beam. Note that we assume on average uniform dis-

tribution over z which is a reasonable local approximation

for small-scale fluctuations. The fluctuational part δf(z, η)

can be Fourier expanded, δf̂k(η) =
∫∞
−∞ dze−ikzδf(z, η).

For shot noise, according to the statistical physics of ideal

gas [17],

〈δf(z, η)δf(z′, η′)〉 = n0F (η)δ(z − z′)δ(η − η′), (2)

which after the Fourier transformation gives

〈δf̂k(η)δf̂k′(η′)〉 = 2πn0F (η)δ(k + k′)δ(η − η′). (3)

Introducing the density fluctuation δn(z) as δn(z) =∫
dη δf(z, η) we find by integrating (2) over η and η′

〈δn(z)δn(z′)〉 = n0δ(z − z′). (4)

This is the mathematical expression of the properties of the

shot noise: the density fluctuations in shot noise are uncor-

related in space.

We can formally introduce the Fourier spectrum of δn(z)

δn̂k =

∫ ∞

−∞
dze−ikzδn(z) =

∫ ∞

−∞
dη δf̂k(η). (5)

Integrating (3) over η and η′ we obtain 〈δn̂kδn̂k′〉 =
2πn0δ(k + k′), which is equivalent to (4) but expressed

through the Fourier harmonics.

SUPPRESSING SHOT NOISE THROUGH
INTERACTION AND DISPERSION

In the interaction region the density modulation changes

particles’ energy through the longitudinal wake. In this sec-

tion we consider a general case of arbitrary wake function

with two specific examples of the wake studied in subse-

quent sections of the paper. We define the wakefield func-

tion w(z) so that the energy change ΔE(z) of particles at

point z in the beam after passage of the interaction region

is

ΔE(z) = e2
∫ ∞

−∞
w(z − z′)δn(z′). (6)

Associated with the wake is the longitudinal impedance

Z(k) defined through the Fourier transform of the wake,

Z(k) = −ŵk/c. Using (6) it is straightforward to find the

relative energy change Δη(z) in terms of Z(k),

Δη(z) = − rec

2πγ

∫ ∞

−∞
dkZ(k)δn̂ke

ikz. (7)

Changing particles’ energy through interaction leads to a

new distribution function at the end of the interaction sec-

tion which we denote by f1, f1(z, η) = f0(z, η −Δη(z)).
Sending the beam through a chicane with the dispersive

strength R56 changes the distribution function again, f1 →
f2, with

f2(z, η) = f1(z −R56η, η) = n0F (η −Δη[z −R56η])

+ δf(z −R56η, η −Δη[z −R56η]). (8)

We consider the fluctuating quantities δf , δn, and hence

Δη, which according to (7) is proportional to δn, as

small quantities and Taylor expand (8) keeping only lin-

ear terms in fluctuations. Integrating the result over η gives

the density fluctuation after the chicane which we denote

δn2(z) = n2(z)− n0,

δn2(z) =

∫ ∞

−∞
dη[δf(ζ, η) +R56n0Δη(ζ)F ′(η)], (9)

where we introduced ζ = z − R56η. We now make the

Fourier transformation of δn2(z) and compute the quantity

|δn2k|2 in the relation 〈δn2kδn2k′〉 = |δn2k|2δ(k + k′).
If |δn2k|2 becomes smaller than the initial |δnk|2 then the

noise is suppressed. The quantity |δn2k|2 can be calculated

using (9) and the correlators for the perturbation of the dis-

tribution function (3). The result is

|δn2k|2 = 2πn0(1− 2T ImQ+ |Q|2T ), (10)

where

Q = R56n0
rec

γ
kZ(k), (11)

and

T =

∣∣∣∣
∫ ∞

−∞
dηeikR56ηF (η)

∣∣∣∣
2

= e−(kR56ση)
2

, (12)
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where the last expression is obtained assuming a Gaussian

distribution, F (η) = (2π)−1/2σ−1
η e−η2/(2σ2

η).

Analysis of (10) shows that the full suppression of noise

can be achieved in the case when Z, and hence Q, are

purely imaginary with ImQ = T = 1. Introducing the

noise factor Fn(k) as Fn(k) = |δn2k|2/|δnk|2, we find

that in this case Fn = 0. As is seen from (12) T = 1
only in the limiting case of a cold beam, ση = 0. Assum-

ing a small energy spread, such that k2R2
56σ

2
η � 1, and

ReZ = 0, it is easy to show that the minimum value of Fn

is achieved at ImQ = 1 and is equal to

minFn ≈ k2R2
56σ

2
η. (13)

We see that for a beam with finite energy spread only par-
tial noise suppression can be achieved.

Expressing R56 through other variables from equation

ImQ = 1 and substituting it into (13) we obtain

minFn =

(
IA
I

σηγ

ImZ(k)c

)2

. (14)

Note that since the required value of R56 from (11) is pro-

portional to 1/n0 and the beam density and current vary

along the bunch, the optimal suppression can be achieved

only in a limited interval where the beam current is approx-

imately constant.

INTERACTION THROUGH SPACE
CHARGE FORCES

Let us assume that interaction between the particles oc-

curs in a drift space and is due to the space charge forces

in the beam, and use a 1D model to describe this interac-

tion. In this model each electron is treated as a sheet of

charge e and area S (S is associated with the beam trans-

verse area) and variation of the field in the transverse di-

rection is neglected. The 1D space charge model is valid

if the transverse size of the beam is large, S � γ/k. In

this case the density modulation δn(z) in the beam cre-

ates the electric field E which satisfies the Poisson equa-

tion ∂E/∂z = 4πeδn(z)/S . Solving this equation with

the help of the Fourier transformation and calculating the

energy change of a particle at coordinate z gives

Δη(z) =
eE(z)L
E0

= − 2ie2L

Sγmc2

∫ ∞

−∞

dk

k
δn̂ke

ikz. (15)

Comparing this with (7) we find the impedance of the space

charge

Zsc =
4πiL

Skc
. (16)

We see that the space charge impedance is purely imagi-

nary and positive, and as was pointed out in the previous

section, can be used to effectively suppress the beam noise.

For a numerical example we consider the following pa-

rameters: beam energy 1 GeV, I = 1 kA, S = 100 μm

×100 μm, ση = 10−4, L ≈ 5 m (comfortably less than

the plasma distance L = πc/2ωp). Using (14) we obtain

Fn ≈ 0.11 at the wavelength of 10 nm.

In the next sections of this paper we shall develop the

longitudinal impedance of three possible schemes. The

original work, upon which this is based, was performed by

two of the co-authors and is described – actually in more

detail – in [18].

1D UNDULATOR INTERACTION
We now consider the case when an undulator in the in-

teraction region provides a mechanism for the energy ex-

change between the particles. Electrons passing through

an undulator interact with each other through the emitted

electromagnetic field of undulator radiation. The wake and

the impedance corresponding to this interaction are calcu-

lated again using the 1D model. Such a model is valid if

the beam area S is much larger than Lu/k, where Lu is the

undulator length.

For simplicity we consider a helical undulator which has

Nu periods and the undulator parameter K. The formula

for the undulator wake wu(z) was derived in Ref. [19], with

the corresponding impedance given by

Zu(ν) =
W

ck0

[
iν

1− ν2
+

(ν2 + 1)(1− e−2πiNuν)

2πNu(ν2 − 1)2

]
,

where λ0 = 2π/k0 is the wavelength of the undulator radi-

ation,

W = 4π
Nuλu

S

K2

1 +K2
= 8π

Nuλ0γ
2

S

K2

(1 +K2)2
, (17)

ν ≡ k/k0, λu is the undulator period, and Nu assumed to

be an integer. It is easy to see that Zu(ν) is purely imagi-

nary when Nuν is an integer. The maximal imaginary part

of Zu is obtained for ν = 1±N−1
u and in the limit Nu � 1

is equal to

ImZu|ν=1±N−1
u

≈ ±WNu

2ck0
. (18)

Comparing this expression with the space charge

impedance (15) we find that, in the limit K � 1, the un-

dulator impedance is Nu/2 times larger than Zsc. On the

other hand, while Zsc in 1D model has a vanishing real part

for all wave numbers k, the real part of Zu vanishes only

at particular values of k. This means that with undulators

one can expect to achieve noise suppression in a narrow

frequency bands the positions of which are determined by

the undulator frequency and the width is inversely propor-

tional to the number of periods Nu. It is interesting to point

out that the product of the impedance by the frequency

bandpass for the undulator, within a numerical factor, is

the same as for the space charge interaction.

In order to have ImZu > 0 we choose ν = 1 − N−1
u .

Substituting (18) into (14) and assuming for simplicity

K = 1 we obtain for the noise factor

minFn =

(
IA
I

2Sση

N2
uλ

2
0γ

)2

. (19)
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Figure 2: Imaginary (red) and real (blue) parts of the

impedance in the undulator for K � 1 and Nu = 20.

As a numerical example consider the following parame-

ters: beam energy 1 GeV, I = 1 kA, S = 100 μm ×100
μm, ση = 10−4, λ = 10 nm, Nu = 30. These parameters

give Fn = 0.04.

LINE-CHARGE BEAM IN UNDULATOR
As we see from (19) making the transverse size of the

beam smaller increases the strength of the interaction and

the wakefield. However, as was pointed out earlier, the one-

dimensional model requires S � Lu/k. To consider the

opposite limit, S � Lu/k, we have to treat the beam as a

line charge. This is the subject of this section, in which we

additionally assume a weak undulator, K � 1.

The wakefield and impedance in this case can be found

using the relation between the real part of the impedance

and the spectrum of radiation of a single electron, ReZ =
(π/e2)dW/dω, where dW/dω is the energy radiated by

the electron in unit frequency interval. The imaginary

part of the impedance can be found with the help of the

Kramers-Cronig relation. In the limit K � 1, using stan-

dard formulas for undulator radiation [20] we found

Z =
π

e2
3W0

ω0
[R(ν,Nu) + iI(ν,Nu)] (20)

where

W0 =
1

3
r2eγ

2B2
0Lu =

π

3
e2k0K

2(1 +K2)Nu (21)

is the total energy radiated by the electron. The expressions

for R(ν,Nu) and I(ν,Nu) can be found in [18].

Plots of the functions R(ν,Nu) and I(ν,Nu) for Nu =
20 are shown in Fig. 2. As one can see from Fig. 2 the

real part of the impedance quickly vanishes in the region

k > k0. This however is not so if we drop the assumption

K � 1: as is well known the radiation from an undula-

tor, and hence ReZ extends over a wide region of frequen-

cies without gaps. To resolve this problem we consider in

the next section a setup with two undulators separated by a

drift.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

k/k0

R
,I

Figure 3: Functions R (red) and I (blue) for a finite length

undulator. The dots on the blue curve indicates values of I
at points where R = 0.

TWO-UNDULATORS SETUP
Consider a system in which there are two undulators

separated by distance ls. Interference between the two

undulator radiation introduces a phase shift factor φ =
k0ls/2γ

2 at the fundamental frequency ω0. It adds a fac-

tor [1 + cos(φk/k0)]
2 in the intensity of the total radiation,

which vanishes for kls = π(n + 1/2), where n is an inte-

ger, n = 0, 1, 2, . . .. The calculated functions R and I for

the case of two undulators setup are shown in Fig. 3 for the

case of Nu = 10 periods, K = 1 and φ = 4π. For the

noise suppression we now have

minFn =

(
IA
I

σηγ

π2K2(1 +K2)NuI(ν,Nu)

)2

. (22)

As a numerical example consider the following param-

eters: beam energy 1 GeV, I = 1 kA, ση = 10−4. We

will take I = −0.26 from Fig. 3 (corresponding to the

point ν = 0.75), which gives Fn = 4 × 10−3. While

this result looks impressive, unfortunately, in the range of

short wavelength (of order of ten nanometers) it requires

small beam radius, and hence small beam emittance. For

example, taking λ = 30 nm, we find that in order for the

line charge model be applicable, the beam radius should be

smaller than 12 μm.

EFFECT OF ENERGY NOISE ON FEL
STARTUP

In the previous sections we looked at the suppression of

the density fluctuations which are characterized by the cor-

relator 〈δn̂kδn̂k′〉. This quantity is proportional to the ini-

tial startup power in SASE FEL only when the beam has

a negligibly small energy spread. In the case of a finite

energy spread analysis shows that the FEL startup is deter-

mined by the following integral [21]:

J = |μ0|2
∫

dηdη′
〈δf̂k(η)δf̂∗k′(η′)〉
(μ0 − η)(μ∗0 − η′)

, (23)
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where μ0 is the complex frequency of the fastest growing

FEL mode normalized by 2kuc. Note that in the limit of a

cold beam, ση → 0, the quantity J reduces to 〈δn̂kδn̂
∗
k′〉,

as expected.

In general case, making 〈δn̂kδn̂
∗
k′〉 equal to zero does

not mean that J vanishes. This has been emphasized in

Ref. [22] where the noise suppression with plasma oscilla-

tions was studied. Here we present the results of analysis

for the case when the interaction and dispersion occur in

separate regions, as shown in Fig. 1.

It turns out that suppression of the quantity J is not as ef-

fective as suppression of the density fluctuations. We now

define the suppression factor Fn = J/J0 where J0 is the

value of J before the suppression. While for the cold beam

the minimum value of Fn was given by Eq. (13), now under

the same conditions, we find

minFn ≡ J

J0
≈ k2R2

56σ
2
η · S

(
kR56ση,

ση

ρ

)
, (24)

where the function S is greater than one. For illustration,

Fig. 4 shows the plot of S as a function of the relative en-

ergy spread for kR56ση = 0.1. One can interpret this re-

0.00 0.05 0.10 0.15 0.20 0.25
0

2

4

6

8

10

ΣE /EΡ

S

Figure 4: Plot of function S versus relative energy spread

normalized by the FEL parameter ρ for kR56ση = 0.1.

sult as an additional (to density fluctuations) energy fluctu-

ations that are not diminished when the density fluctuations

are decreased.

SUMMARY
Let us try and summarize the subject of noise suppres-

sion of beams sutable for driving an FEL. A practical beam

will be Gaussian, not a flat top, and therefore the suppres-

sion methods will only work for part of the beam. Practi-

cal application requires that a beam very close to a flat top

be produced. Also, we have seen that the intrinsic energy

spread must be very small (even as compared to σE/Eρ).

Again this puts a requirement on the electron gun and, most

particularly, on the avoidance of instabilities in the buncher

without use of a laser heater. We note that the undulator

methods of noise suppression require an intense beam of

very small emittance. Once again, a severe requirement on

the electron gun. Alternatively, undulators of a very small

wavelngth would be useful. In sum, then, the noise sup-

pression schemes do not seem to help at the present time.

On the other hand, the reduction of noise is definitely an ad-

vantage for FEL operation and the effort, here, delineates

the developments necessary to make suppression useful in

practical systems.
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