

Recent experimental results and techniques deployed on the CERN Antiproton Decelerator (AD) complex

Stefan Haider

Overview

- Motivation on p
 – physics
- AD Hall
- AD experiments
 - ACE
 - ALPHA
 - ASACUSA
 - ATRAP
 - AEgIS
- Conclusion

Why compare matter and anti-matter?

- Baryon asymmetries in the universe? Where is the antimatter gone?
- With gravity measurements we can test the Weak Equivalence Principle

But is it true for anti-matter too?

Offers extremely sensitive tests of CPT symmetry

AD Hall (future layout with Elena)

INGREDIENTS:

- V-79 Chinese Hamster cells embedded in gelatin
- **Antiproton** beam from AD (126 MeV)

Survival fraction of cancer cell irradiated with Protons and Antiprotons

ALPHA (Antihydrogen Laser Physics Apparatus)

- Trapping of Antihydrogen atoms
- Perform micro wave spectroscopy
- Perform laser spectroscopy (future)

Magnetic trap configuration

1T external field

mirror coils for axial confinement

- 3 × 10⁴ p and 2 × 10⁶ e+ in nested
 Penning traps located within the bias field of the loffe trap
- 1000 H-bars produced but only a few were cold enough to be trapped (T<1K)
- Quench magnet within milliseconds to release the trapped atoms and record their annihilation signature

Microwave spectroscopy

ALPHA microwave spectroscopy

Hyperfine energy levels.

- decelerated the 5.3-MeV p-bar arriving from AD to E ~ 60 keV with a high (~ 25%) efficiency
- Projected onto a Helium gas target in order to form $\overline{p}\mathrm{He}_{(n,\ell)}^+$. Measure the antiproton to electron mass ratio
- Second program: p-bar trapped to form a continuous beam for measuring the ionizing cross section of p-bar on gas targets.

pHe laser spectroscopy contributes to mp/me

$$\overline{p} + \text{He} \rightarrow \overline{p} \text{He}^+_{(n,\ell)} + e^-$$

-laser pulse changes the \overline{p} orbit

resonance detection via p annihilation

Frequency
$$\overline{\nu_{n,\ell\to n',\ell'}} = Rc \overline{m_{\bar{p}}^*} Z_{\rm eff}^2 \left(\frac{1}{n'^2} - \frac{1}{n^2}\right) + {\rm QED}$$

$$\overline{\rm p} \ (\rm p) \ - \ e \ mass \ ratio$$
 Theory

ASACUSA

Jan 15, 2013, R.S. Hayano

Asacusa $\overline{p}\mathrm{He}_{(n,\ell)}^+$ laser spectroscopy

ASACUSA Antiprotonic-Helium production

$$\overline{p} + \text{He} \rightarrow \overline{p} \text{He}^+_{(n,\ell)} + e^-$$

- P-bar is absorbed by Helium nucleus within pico seconds
- With single photon spectroscopy observe the resonance btw laser and atom by count rate of $\pi+\pi-$ in Cherenkov detector as a function of the laser frequency
- Two photon spectroscopy with two head-on (counter propagating beams) lasers minimizes Doppler broadening effect. (first order effect)
- 2 photon transitions of the type
 (n,l) → (n-2, l-2) induced.
- P-bar is exited by the first laser beam, to a virtual state, which must be close to a not-allowed state. Due to overlapping wave functions of this virtual state, the transition probability for the two photon transition increases by >10⁵!
- High power lasers with high spectral purity and low phase noise are needed.

ASACUSA experimental setup

ASACUSA laser spectroscopy results

T~15K

Comparing calculations and experimental data

$$- m_{pbar} / m_e = 1836.1526736(23)$$

2012 Accomplishments

p He	▶ m _ē /m _e in CODATA 2010
	 1-photon spectroscopy of "cold" pHe+ completed (x5-10 better than the 2006 results)
	▶ First attempt at 2-photon spectroscopy of "cold" p̄He - higher than ever precision
CUSP (H)	▶ Autoresonance scheme for p̄ injection into the e+ cloud
	▶ e ⁺ intensity x20 with a solid Ne moderator and longer N ₂ gas cells.
	 H beam production was tested elongating the H formation period. Data analysis is in progress.
	► H beam detectors developed
_ p σ _{annhilation}	 observation of p̄-A annihilation at 130 keV (published in EPJ+)

- Anti-Hydrogen production
- Antiproton and proton magnetic moment measurement

Three Antiproton Traps

more precise measurements will take place here

Atrap

Spin-Flips Increase Allan Deviation

- · Continuous Stern Gerlach split-up of the anti-proton in an inhomogenous magnetic field
- Change of Eigen frequency is a very small effect
- · Considerable experimental challenge

square of extra width

$$\frac{\mu_p}{\mu_N} \equiv \frac{g_p}{2} = \frac{f_s}{f_c}$$

$$f_c^2 = f_+^2 + f_z^2 + f_-^2$$

Brown-Gabrielse Invariance Theorem

Gabrielse

First One-Particle Measurement of the Antiproton Magnetic moment

$$\mu_{\overline{p}}/\mu_N = -2.792845 \pm 0.000012$$
 [4.4 ppm].

680 times lower than previous

$$\mu_{\overline{p}}/\mu_p = -1.000\,000\,\pm 0.000\,005$$
 [5.0 ppm]
 $\mu_{\overline{p}}/\mu_p = -0.999\,999\,2\pm 0.000\,004\,4$ [4.4 ppm].

Resonance	Source	ppm
spin	resonance frequency	2.7
spin	magnetron broadening	1.3
cyclotron	resonance frequency	3.2
cyclotron	magnetron broadening	0.7
total		4.4

TABLE I. Significant uncertainties in ppm.

- Primary goal:
 - Measurement of gravitational acceleration g for antihydrogen with 1% accuracy
- Secondary goals:
 - Spectroscopy of antihydrogen
 - Study of Rydberg atoms
 - Positronium physics: formation, excitation, spectroscopy

- Produce ultra cold antiprotons
- Form positronium by interaction of positrons with a porous target (pulsed)
- Laser excite Ps to get Rydberg Ps (pulsed)
- Form Rydberg cold antihydrogen (pulsed) by $Ps^* + \overline{p} \to \overline{H}^* + e^-$
- Stark accelerate the antihydrogen with inhomogeneous electric fields → Pulsed production of a cold beam of antihydrogen
- Measure the gravitational acceleration in a classical moiré deflectometer

(Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy)

 $Ps^* + \overline{p} \rightarrow \overline{H}^* + e^-$

- Positronium charge exchange technique:
 - Large cross-section, scales as n⁴
 - Narrow and defined final state distribution

Moiré Deflectometer

- Classical deflectometer (shadow mask)
- Third grating replaced by positionsensitive detector

5T Catching Traps

Stefan Haider

COOL'13, June 2013

1T Formation Traps

Central Antihydrogen Detector

- Scintillating fibre detector operating at 4K
- 800 channels readout by SiPM
- 200 MHz readout detecting hit pattern

Positron System

Positron System

Cold and hot antiproton fractions vs. electron cooling time

Trapping, cooling

Commissioning Results

Manipulations

Detector Tests

Parasitic tests:

Explore different candidate technologies for the (downstream) antihydrogen detector

Silicon detectors (strip, pixel)

MCP

Emulsions

Stefan Haider

COOL'13, June 2013

Silicon Detectors

- 3D pixel sensor designed for the ATLAS upgrade
- Also tested: strip sensor, Mimotera

Emulsions

- Exposure of emulsion
- Development in dark room
- Scanning on automated microscopes
- Offline track and vertex finding algorithms
- 1 µm vertex resolution

First Test of moiré Deflectometer

- ~100 keV antiprotons
- 7 hour exposure
- Bare emulsion behind deflectometer

First Test of moiré Deflectometer

- Antiproton fringes observed
- Alignment of gratings using light and single grating
- Promising results!

Publication forthcoming!

Overview of AD physics

	Magn.	Spectroscopy		Gravity	Other
	Moment μ	optical	microwave		(med, σ,)
ACE					✓ ✓
AEgIS					
ALPHA			?	?	
ASACUSA	~				✓
ATRAP					
	^				
BASE					
GBAR					
< 2013 > 2013					

Conclusions

- The AD facility has proven to be THE place for precision physics
- All experiments prepare for the return of anti-protons in Q2 2014
- Gravity measurements are in preparation now and should settle the long lasting question on the influence of gravity and anti-matter
- Many thanks to the AD team for an outstanding performance of the machine