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 The TSR Storage Ring 

TSR: shut down December 2012 
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TSR experiments with a reaction microscope  

reaction microscope 

tool to measure the dynamic of charge transfer/ionization 

processes between  a stored ion beam and an neutral beam 

gas jet Helmholz coils 

for some experiments  very short  

ion bunches are required  

 

Helmholz 

coils 

gas jet 

interaction between 

gas jet and ion beam 

 investigation of short bunch creation  at the TSR  

ion beam 



cooling solenoid 

 longitudinal phase space 

 damping of synchrotron oscillation 

electron  
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separatrix closed orbit 

bunch profile before  
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Bunch length compression with electron cooling 

bunch profile before  

electron cooling 



Measured bunch  profile with electron cooling 

bunch length as a function of 

 resonator voltage I=20 mA 

bunch length as a function of 

intensity  U=795 V 

measured bunch profile 

beam 
12C6+  E=50 MeV 

I = 45 mA 

U=795 V 

W = 20 ns  

for R→∞: U~I 

measurement with capacitive pick up 
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space charge ion bunch  

Space charge limitation of bunch length 
bunch profile with  electron cooling  
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effective acceleration voltage: 

Ueff(f)=U· sin(f+fs)+Us(f) 

 with Us(f)=Es(f)·C0   C0 - circumference 

fs=00 

fit 

parabola  

profile 

f0 f<0 

parabola profile: only distribution to compensate the synchrotron motion of each ion 



Space charge limitation 

comparison theory and measurements 

theory 

bunch length as a function of 

 resonator voltage U  I=20 mA 
bunch length as a function of 

intensity  I  U=795 V 

theory 

space charge limit: 

parabola profile 

I – intensity, U - resonator voltage 

beam 
12C6+  E=50 MeV 

 

beam 
12C6+  E=50 MeV 

 

calculated for 

r=2s= 2 mm 

R=100 mm 

calculated for 

r=2s= 2 mm 

R=100 mm 
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Operation of the storage ring at <0 ring 

resonator voltage 

late ion 

space charge 
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space charge voltage Us(f)  doesn’t compensate 

resonator voltage U· sin(f+) ,  

no space charge limit at <0  !!!! 

operation  of the storage ring at <0 

    to achieve smaller bunch length 

 f- revolution frequency 

 p- momentum 

at 
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effective acceleration voltage: 

Ueff(f)=U· sin(f+fs)+Us(f) 

 with Us(f)=Es(f)·C0   C0 - circumference 



The slip factor  of a storage ring 

To get the η parameter negative the orbit length of ions with positive momentum 

deviation has to increased by increasing the  dispersion Dx(s) inside the dipole magnets 

ion orbit inside dipole magnet 
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The slip factor of the TSR at negative   

h=6 

h=6 

Schottky frequency as a function of 

cathode voltage 
Schottky frequency  as a function of  

the magnetic field (main dipole) 
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 is negative !!! 
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Electron cooled bunches at negative and positive  

bunch length measured at =-0.59 
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Gaussian  

distribution 
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measurement 
measurement 

fit 

fit 

beam: 12C6+ E=50 MeV 

I=2.9  mA 

U=651 V 
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 comparison: corresponding  Gaussian bunch length s* with same half width  

as parabola  distribution:  w6.0
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Measured bunch length at =-0.59 

Comparison of measured bunch length at =-0.59 

and at the TSR standard-mode (=0.91) 

=-0.59 corresponding bunch length 

at =.91 with same half width: 

w6.0 s* shorter bunch length ( factor  2-3.5)  are archived   

at <0  for the same U an I compared to the  standard 

 mode with >0   



 pick-up voltage 

Self Bunching at <0 

 pick-up voltage 

I  2μA 

s = 4.5 ns 
beam: 12C6+ 

E=50 MeV 

 

disturbance 

with beam, without rf  U0=0, ECOOL on without beam, without rf, ECOOL on 
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at t=0 s and start electron cooling 

start self bunching 

t 0.150 s 

observation frequency  f = 1.0 MHz 

decay with time constant 

 

s6d 

creation of bunches 

(beam  lifetime:  1400 s ) 

 Pick-up signal meaured at f=1 MHz (h=2) 

 as a function of time 
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Deceleration of ion beams 

demand of highly charged ions at low velocities for experiments with a  

reaction microscope 

Example: deceleration of 12C6+ ions: energy: 73.3 MeV→ 9.7 MeV 

B·r: 0.71 Tm → 0.26 Tm  

beam rigidity as a function of time 

declaration cycle:  

increase of bunch length and beam size 

 two electron cooling steps: 

1. after injection before ramping 

2. at the final energy to provide good  

     beam  quality for the experiment 

almost linear decrease of beam rigidity and beam velocity  



and with 

k=3    = 5.9  (bunched beams) 
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Horizontal beam sx beam width  during deceleration 

ECOOL off  

and start deceleration 

final energy E=9.7 MeV 

start electron cooling 

calculation taking into 

account IBS 

final beam  

width at 
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beam: 12C6+ E=73.3 MeV → 9.7 MeV 

horizontal beam width 

pre electron cooling  

(E=73.3 MeV) 
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IBS studies with 12C6+ ions at the initial energy of 73.3 MeV 
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IBS measurement at TSR 

E=73.3 MeV  

bunching at h=6 

I=50 mA 
fit: =5.9  
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Beam width during deceleration  
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 beam width during deceleration: 

change of the beam size 

due to Lioville  
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calculated beam width during deceleration 
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