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Abstract

We show that properties of the beam position monitor
(BPM) system designed for the measurement of transverse
and energy beam jitters can be described in terms of the
usual accelerator physics concepts of emittance, energy
spread, dispersions and betatron functions. Besides that,
using the Courant-Snyder quadratic form as error estima-
tor we introduce the scalar objective function which can be
used as design criteria of a BPM measurement system with
needed properties.

INTRODUCTION

The determination of variations in the beam position and
in the beam energy using BPM readings is one of the stan-
dard problems of accelerator physics. If the optical model
of the beam line and BPM resolutions are known, the typ-
ical choice is to let jitter parameters be a solution of the
weighted linear least squares problem. For transversely un-
coupled motion this least squares problem can be solved
analytically, but the direct usage of the obtained solution
as a tool for designing a BPM measurement system is not
straightforward. A better understanding of the nature of
the problem is needed. In this article, following the papers
[1, 2, 3], we show that properties of the BPM measurement
system can be described in terms of the usual accelerator
physics concepts of emittance, energy spread, dispersions
and betatron functions. Due to space limitation, we con-
sider only the case of transversely uncoupled nondisper-
sive beam motion and inclusion of the energy degree of
freedom and multiple examples can be found in the papers
cited above.

STANDARD LEAST SQUARES SOLUTION

We assume that the transverse particle motion is uncou-
pled in linear approximation and use the variables �z =
(x, px)� for the description of the horizontal beam oscil-
lations. As transverse jitter parameters in the point with
the longitudinal position s = r (reconstruction point) we
mean the difference δ�z(r) = �z(r) − �zg(r) between pa-
rameters of the instantaneous orbit and parameters of some
predetermined “golden trajectory” �zg = (x̄, p̄x)�.

Let us assume that we have n BPMs in our beam line
placed at positions s1, . . . , sn and they deliver readings
�bc = (bc

1, . . . , b
c
n)� for the current trajectory with pre-

viously recorded observations for the golden orbit being
�bg = (bg

1, . . . , b
g
n)�. Suppose that the difference between

these readings δ�bς = �bc−�bg can be represented in the form
∗ vladimir.balandin@desy.de

δ�bς = (x(s1)− x̄(s1), . . . , x(sn)− x̄(sn))� + �ς, (1)

where the random vector �ς = (ς1, . . . , ςn)� has zero mean
and positive definite covariance matrix

Vς = diag
(
σ2

1 , σ2
2 , . . . , σ2

n

)
. (2)

As usual, we find an estimate δ�zς(r) for the difference orbit
parameters δ�z(r) in the presence of BPM reading errors �ς

by fitting the difference in the BPM data δ�bς to the known
optical model of the beam line, i.e. by solving weighted
linear least squares problem. If the phase advance between
at least two BPMs is not a multiple of 180◦, then the result
of this fit is unique and is given by the formula

δ�zς(r) =
(
M�(r)V −1

ς M(r)
)−1

M�(r)V −1
ς · δ�bς . (3)

The calculation of the covariance matrix of the reconstruc-
tion errors is also standard and gives the following result

Vz(r)
def= V ( δ�zς(r) ) =

(
M�(r)V −1

ς M(r)
)−1

. (4)

Here

M =

⎛
⎜⎝

a11(r, s1) a12(r, s1)
...

...
a11(r, sn) a12(r, sn)

⎞
⎟⎠ , (5)

and a11(r1, r2), a12(r1, r2) are the elements of a two by
two symplectic matrix A(r1, r2) which transfers particle
coordinates from the point with the longitudinal position
s = r1 to the point with the position s = r2.

For the considered one-dimensional case the matrix in-
version in the right hand side of the formula (4) can be done
analytically and the elements of the error covariance matrix
Vz(r) can be obtained in the explicit form as follows

(Vz(r))1,1 =
1
Δ

n∑
m=1

(
a12(r, sm)

σm

)2

, (6)

(Vz(r))1,2 = (Vz(r))2,1 =

− 1
Δ

n∑
m=1

(
a11(r, sm)

σm

)(
a12(r, sm)

σm

)
, (7)

(Vz(r))2,2 =
1
Δ

n∑
m=1

(
a11(r, sm)

σm

)2

, (8)

where
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Δ =
1
2

n∑
k,m=1(

a11(r, sk)a12(r, sm)− a11(r, sm)a12(r, sk)
σkσm

)2

. (9)

In theory, the formulas (6)-(9) contain all information
which one has to know in order to be able to design a BPM
measurement system with needed properties or in order to
be able to compare expected performance of two different
measurement systems. In practice, unfortunately, the sim-
ple knowledge of formulas (6)-(9) is quite far from being
sufficient for these purposes. Let us assume, for example,
that we want to compare resolutions of two BPM systems
which are supposed to be used for trajectory jitter determi-
nation and are installed in two different beam lines. For this
purpose we need, at least, to have a criteria how to compare
two covariance matrices and to know how to chose the re-
construction points (own for each measurement system) in
which such comparison has to be done. Does all that looks
to be fairly straightforward?

ERROR TWISS PARAMETERS AND
COURANT-SNYDER QUADRATIC FORM

AS ERROR ESTIMATOR

An important step in solving the problems marked at the
end of the previous section was made in [1, 2], where dy-
namics was introduced into this problem which in the be-
ginning seemed to be static. When one changes the po-
sition of the reconstruction point, the estimate of the jitter
parameters propagates along the beam line exactly as a par-
ticle trajectory and it becomes possible (for every fixed jit-
ter values) to consider a virtual beam consisting of virtual
particles obtained as a result of application of least squares
reconstruction procedure to “all possible values” of BPM
reading errors. The dynamics of the centroid of this beam
coincides with the dynamics of the true difference orbit and
the covariance matrix of the jitter reconstruction errors can
be treated as the matrix of the second central moments of
this virtual beam distribution and satisfies the usual trans-
port equation

Vz(r2) = A(r1, r2)Vz(r1)A�(r1, r2). (10)

Consequently, for the description of the propagation of the
reconstruction errors along the beam line, one can use the
accelerator physics notations and represent the error covari-
ance matrix in the familiar form

Vz(r) = ες

(
βς(r) −ας(r)

−ας(r) γς(r)

)
, (11)

where βς(r) and ας(r) are the error Twiss parameters and

ες =
√

detVz(r) = 1/
√

Δ (12)

is the invariant error emittance.

Note that the error Twiss parameters can also be found
as solution of the minimization problem

min
β(r), α(r)

n∑
m=1

β(sm)
σ2

m

. (13)

Under the assumption that the phase advance between at
least two BPMs is not a multiple of 180◦, the solution of
the problem (13) is unique, the minimum is reached at the
error Twiss parameters and is equal to 2/ες .

Parametrization (11) is an essential step ahead in under-
standing of the structure of the matrix Vz(r) in compari-
son with the formulas (6)-(9). It introduces such impor-
tant characteristic of BPM measurement system as error
emittance and shows that balance between coordinate and
momentum reconstruction errors in the point of interest is
defined by the values of error Twiss parameters at this lo-
cation. Nevertheless, it still does not give a single prop-
erty to compare two different BPM systems. Fortunately,
the beam dynamical point of view on the BPM measure-
ment system naturally suggests us that in order to obtain
the needed criteria we may simply use the Courant-Snyder
quadratic form as an error estimator.

Let β0, α0, γ0 be the design Twiss parameters and

Ix(r, �z ) = γ0(r)x2 + 2α0(r)xpx + β0(r) p2
x (14)

the corresponding Courant-Snyder quadratic form. Using
this quadratic form we introduce the random variable

Iς
x = Ix(r, δ�zς(r) − δ�z(r)). (15)

The mean value of this random variable is equal〈
Iς
x

〉
= 2 ες mp(βς , β0), (16)

where

mp(βς , β0) = (βςγ0 − 2αςα0 + γςβ0) / 2. (17)

The right hand side in (16) does not depend on the posi-
tion of the reconstruction point (is a number), character-
izes the resolution of the BPM system not in some absolute
units but in the relative units of beam sigmas and, there-
fore, allows to compare properties of two completely dif-
ferent BPM systems installed in two different beam lines
and also can be used as scalar valued (not matrix valued)
design criteria.

TWO BPM CASE

Let us consider two BPMs separated in the beam line by
a transfer matrix A(s1, s2) with a12 �= 0 and assume that
these BPMs deliver uncorrelated readings with rms resolu-
tions σ1 and σ2 respectively. Often, when one works on
optimization of the optics of two BPM system, one speaks
about the desire to have the large beta functions at the BPM
locations and the phase advance being equal or enough
close to 90◦ . And that is completely right, if one will in-
terpret this desire as a way to increase absolute value of
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the a12 coefficient, because the error emittance of the two
BPM measurement system is inversely proportional to it

ες = (σ1 σ2) / |a12| . (18)

Nevertheless, because due to formula (16) the figure of
merit for the quality of BPM system is not the error emit-
tance alone, but the product of the error emittance and the
mismatch between the error and the design Twiss parame-
ters (large mismatch can spoil the properties of the mea-
surement system even for the case when the error emit-
tance is small), one has to take additional care and compare
design betatron functions with the error betatron functions
which are given below

βς(s1) =
σ1

σ2
|a12| , ας(s1) =

σ1

σ2
sign (a12) a11, (19)

βς(s2) =
σ2

σ1
|a12| , ας(s2) = −σ2

σ1
sign (a12) a22. (20)

Let us note that though the error Twiss parameters de-
pend on the ratio of BPM resolutions, the error phase ad-
vance (phase advance defined by βς ) is independent from
this ratio and is always equal to an odd multiple of 90◦.

PERIODIC MEASUREMENT SYSTEM

In this section we consider a measurement system con-
structed from n identical cells assuming that we have one
BPM per cell (identically positioned in all cells) and that
the cell transfer matrix allows periodic beam transport with
phase advance μp being not a multiple of 180◦. Addition-
ally, we assume that all BPMs have the same rms resolution
σbpm. In this situation the formula for the error emittance
is rather simple and is given by the expression

ες =
2σ2

bpm

nβp(s1)
·mp(βς , βp) , (21)

where βp(s1) is the value of the periodic betatron function
at the BPM locations and

mp(βς , βp) =

(
1 −

(
1
n
· sin(nμp)

sin(μp)

)2
)− 1

2

(22)

is the mismatch between the error and the periodic beta-
tron functions (even so we do not assume, in general, peri-
odic betatron functions being the design betatron functions
matched to our beam line).

There is a rather widespread opinion that a periodic mea-
surement system reaches an optimal performance when its
design Twiss parameters are cell periodic and the cell phase
advance is a multiple of 180◦ divided by n. Is that really
so? To answer this question let us take the cell periodic
Twiss parameters as design Twiss parameters and write

〈Ix〉 =
4σ2

bpm

nβp(s1, μp)
·m2

p(βς , βp) . (23)
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Figure 1: Functions Ψn (μp) shown for n = 2, 3, 4, 5
(magenta, red, green and blue curves respectively). The
gray curve shows function Ψ∞ (μp) .

Looking at the formula (22) one sees that the choice of μ p

such that sin(nμp) = 0 makes the error and the periodic
Twiss parameters equal and brings the second multiplier
in the right hand side of the formula (23) to the minimal
possible value. But, in general, it does not guarantee that
the product of the two multipliers in (23) is also minimized.
So the answer is not or, more exactly, not necessary.

To be more specific, let us consider a thin lens FODO
cell of the length L as a basic unit of our periodic system
and let us also assume that the BPM is placed in the “cen-
ter” of the focusing lens. In this situation

〈Ix〉 = 2εςmp (βς , βp) =
4σ2

bpm

nL
·Ψn (μp) , (24)

where

Ψn (μp) = Ψ∞ (μp) ·m2
p (βς , βp) , (25)

Ψ∞ (μp) = sin(μp) / (1 + sin(μp/2)). (26)

The functions Ψn for n = 2, 3, 4, 5 are plotted in figure 1
together with their values in the points

μp = k · (180◦ / n), k = 1, . . . , n− 1, (27)

shown as small circles at the corresponding curves. One
sees that for all n the optimal performance of our measure-
ment system (minimum of Ψn) is reached for the phase
advance which is different from the multiples of 180◦ / n.
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