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Abstract 
The Fermilab Booster is a fast ramping (15Hz) 

synchrotron which accelerates protons from 400MeV to 
8GeV. During commissioning of a transverse digital 
damper system, it was shown that the damper could 
provide a measurement of the machine tune throughout 
the cycle by exciting just 1 of the 84 bunches with 
minimal impact on the machine operation. The algorithms 
used to make the measurement have been incorporated 
into the damper FPGA firmware allowing for real-time 
tune monitoring of all Booster cycles. 

INTRODUCTION 
The Fermilab Booster synchrotron operates over an 

energy range of 400 MeV to 8 GeV at 15 Hz cycle. To 
accomplish this the RF sweeps from 37MHz to 52.8MHz.  
The Booster has a harmonic number of 84 and typically 
accelerates 81 bunches with a three bunch “notch” for the 
kicker.  The design betatron frequencies in the horizontal 
and vertical planes are vx = 6.75 and vy = 6.85 respectively 
but vary substantially over a machine cycle due to lattice 
functions changing as the magnets ramp. A correction-
magnet assembly consisting of a horizontal and vertical 
dipole, a quadruple and a skew quadruple is placed in 
each short and each long straight section. The quadruples 
and skew quadruples are designed to accommodate the 
space-charge tune shift at injection and to control the tune 
against inherent resonances and the coupling resonance of 
the horizontal and vertical oscillations over the entire 
cycle. Historically tune control in the Booster has been a 
difficult job because the tune measurement is slow and 
generally invasive requiring dedicated study periods [1,2]. 

BOOSTER TRANSVERSE DAMPER 
A digital feedback system is being commissioned to 

provide wideband bunch by bunch transverse damping in 
Fermilab Booster.  An overview of the digital damper 
system is shown in Fig. 1. The system consists of a 
stripline BPM and difference hybrids which provides a 
signal proportional to the beam position, a digital damper 
board which processes the signals and provides an output 
kick for each bunch.  The output kick is amplified and 
driven to stripline kickers. 

The damper system is configured and controlled by 
the central processor unit. New programs for the VME 
CPU and the FPGA can be loaded in this way, and the 
per-state configuration of the damper is accessible via the 
standard controls system, ACNET [3]. One may trivially 
change “live” which bunches are to be damped, the phase 
advance of the transverse FIR filter and so on.   

 Digital Damper Board 
The digital damper is a custom designed VME board 

developed at Fermilab specifically for digital feedback 
applications.  It was first used in the Fermilab Recycler 
transverse damper system [4]. The board contains four 12 
bit 212Msps AD9430 ADCs input to the FPGA which 
drives four channels of 14 bit 212Msps AD9736 DACs. 
The FPGA is an Altera Stratix II EP2S60. The FPGA 
handles all signal processing and I/O on the board 
including the VME slave interface.  

A schematic diagram of the data processing used for 
the Booster bunch by bunch damping is shown in Fig. 2. 
The damper board locks to the Booster RF so that the 

Figure 1: Overview of the Booster transverse digital damper system. 
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