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measurements. The systematic uncertainty of the 
photocurrent measurement is estimated to be less than 
100 ppm. The radiometer power uncertainty is determined 
from obtaining a large sample of power measurements 
while the radiometer absorber temperature was placed at a 
specific set point.  The systematic uncertainty of the 
power measurement is estimated to be less than 100 ppm, 
and considered negligible.  

Table 1: Relative Uncertainty in AXUV100 Diode 
Response (A/W) Measurement × 100 

Photon 
Energy 
(keV) 

Alignment 
Uncertainty 

Photodiode 
Current 

Uncertainty 

Radiometer 
Power 

Uncertainty 

Total 
Relative 

Uncertainty 

8 0.2610 3.5080 0.2661 3.5277 
10 0.3677 3.5080 0.0759 3.5280 
15 1.1213 1.0659 0.2661 1.5698 
18 0.8299 1.0292 0.2425 1.3442 
20 0.7177 3.1418 0.3656 3.2434 
22 0.6610 1.5250 0.2425 1.6797 
24 0.6524 2.0228 0.2425 2.1392 
26 0.6741 2.6453 0.2425 2.7406 
28 0.2686 3.8409 0.2543 3.8587 
30 0.4367 7.3094 0.2661 7.3272 

 

 

Figure 6: Responsivity of the AXUV100 photodiode as 
determined by the Radiometer and compared to photon 
absorption models for 44.5 and 52 μm of silicon. 

In Figure 6, the responsivity of the AXUV100 
photodiode is plotted against the theoretical responsivity 
as determined by photon absorption of 44.5 and 52 μm of 
silicon.  These thicknesses were chosen as they 
encompass all of the data points.  Considering the 
AXUV100 photodiode is not bare silicon, but is attached

 to a Steatite package using a metal based epoxy, the 
responsivity will not strictly follow the silicon absorption 
model, particularly at higher energies, as the metal based 
epoxy will create fluorescence photons.  The silicon 
thickness is also variable between regions, and could 
introduce considerable variation between measurements if 
the diode was repositioned.  

CONCLUSIONS 
Comparing the theoretical responsivity of an 

AXUV100 photodiode and the CLS developed electrical 
substitution radiometer derived responsivity show good 
agreement with the theoretical responsivity of silicon over 
an energy range of 8 keV and 30 keV.  Steps will be taken 
to reduce photocurrent, alignment, and power 
measurement uncertainty in future measurements.  
Results from a calibration of the same diode to be 
conducted at Physikalisch-Technische Bundesanstalt 
using the SYRES II radiometer will aide in validating any 
future results.  
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