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PART I

What is the beam current/charge

What is its origin



The Intensity Measurement
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· Movement of electrically charged particles generates a current
· Beam = charged particles which move around the accelerator

I Beam intensity / Beam charge:
I either an equivalent DC current
I or number of charged particles in a ’region of interest’

I Region of interest (ROI):
specific time interval corresponding to a measured

structure
→ next slide

I The number of charges:

NP =
Q

e
=

∫
ROI ibeam(t)dt

e
≈ I · t

e
(1)

Q is a measured charge, e = 1.602× 10−19 C.

ibeam is the beam current intercepted by measurement device



Region of interest
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Repetition rate

t [µs]

Batch length

Fine structure t [µs]

• Repetition rate = CW to seconds

• Batch length = ns to ms or CW

• Bunch spacing = ps to ms

• Bunch length σ = fs to nsσ

IDC,eq

IDC

Bunch spacing

Q =
∫

ROI ib(t)dt

Bunch pattern example
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• Bunch length σ = fs to nsσ

IDC,eq

IDC

Bunch spacing

Q =
∫

ROI ib(t)dt

Bunch pattern example

I LINACs: equivalent DC current in a batch

I electron machines/fine structure: bunch charge

I circulating beam: bunch charge / DC beam current

I other, e.g. total charge over a revolution period

Additional information, e.g. amount of debunched beam
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Additional information, e.g. amount of debunched beam



PART II

What measurement methods are available?



What can measure the charge
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What can give precise information about the charge?
I a measurement instrument:

I provide deterministic absolute measurement value
I must be calibrated

I direct calibration - not many devices available
I indirect calibration - uses directly calibrated devices

I uncertainty of the measurement and calibration standards

I dynamic range and noise levels are of utmost importance

I Can provide: instant current, average current, bunch charge,
turn charge etc.

I used for machine protection (e.g. Reeg, H. et al., EPAC2006)



Charge measurement devices
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I non-intercepting - inductive/capacitive coupling to the beam

→ insignificant impact on the beam
→ couple to EM  image current ’treatment’
I inductive: FBCTs, DCCTs, WCMs, striplines (EM coupling)
I capacitive: BPMs, all sorts of button-style pick-ups
I magnetic sensors: SQUIDs, Magneto-resistive sensors, CCCs,

nDCCT

I intercepting - direct interaction with the beam

→ absorption of significant part of the energy
I Faraday cups (beam stoppers), SEM grids, screens, Ionisation

chambers
I even Wire scanners can provide intensity
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PART II

What measurement methods are available?

A) Non-DC beam current measurements
What is needed to get the beam signal?

How to process the beam signal?
Calibration?

B) DC beam current measurements
DCCT and its calibration

MR sensors
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Non-DC: What is needed to get the beam signal
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A) Non-DC beam current measurements

We might use these to get the beam signal:

Faraday cups
BPMs and capacitive pick-ups

WCMs
FBCTs

Note:
Faraday cups measure down to DC as well, but ...
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A) Non-DC beam current measurements

We might use these to get the beam signal:
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BPMs and capacitive pick-ups

WCMs
FBCTs

Note:
Faraday cups measure down to DC as well, but ...



Faraday cups
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Measurement of low to mA currents

Ibeam

Rl Vout ≈ Rl · Ibeam

Long transmission line

I → U

Faraday cup

Ibeam

Rl Vout ≈ Rl · Ibeam

Long transmission line

I → U

Faraday cup

Provides pA resolution with excellent absolute accuracy



Faraday cups
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Generated secondary particles can escape the cup

Ibeam

Rl Vout ≈ Rl · Ibeam

Long transmission line

I → U

Faraday cup

Ibeam

Rl Vout ≈ Rl · Ibeam

Long transmission line

I → U

Faraday cup

Install longer cup, or ...



Faraday cups
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Generated secondary particles can escape the cup

Ibeam

Rl Vout ≈ Rl · Ibeam

Long transmission line

I → U

HV

Electrostatic deflector

Ibeam

Rl Vout ≈ Rl · Ibeam

Long transmission line

I → U

HV

Electrostatic deflector

deflect them back using HV higher than mean SE energy



Implementations
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SE deflection using electrostatic shieldingSE deflection using electrostatic shielding

SE deflection using electrostatic shieldingSE deflection using electrostatic shielding

I USR/FLAIR anti-proton
storage

I mainly for proton beams

I p− measurements limited due
to 100 MeV+ p-p−

annihilation

I 1 µA down to fA, res. < 5 fA

Harasimowicz, J. et al., BIW2010



Properties
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Extremely accurate measurements down to pA levels, used as
absolute calibration standard

I cup heat-load with intense beams require active cooling

I emission of secondary particles

I may have problems with attraction of particles flying around
(e.g. electron showers)

Signal transmission bandwidth in hundreds of MHz. For electron
machines/fine beam structures appropriate HIBW connection to
the current meter must be provided to tens of GHz

→ Fast Faraday Cups (FFC), e.g. ELETTRA



FFC principle of operation
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2.4mm Vacuum Feedthrough

Beam attenuators

Bellows for Fine Tuning

Faraday Cup

Stripline Circuit

C. Deibele, Fast Faraday Cup, SNS

2.4mm Vacuum Feedthrough

Beam attenuators

Bellows for Fine Tuning

Faraday Cup

Stripline Circuit

C. Deibele, Fast Faraday Cup, SNS

Ferianis., M. et al. DIPAC 2003
Up to 40 GHz transmission bandwidth



Implementations

22

C. Deibele, Fast Faraday Cup, SNSC. Deibele, Fast Faraday Cup, SNS



Non-DC: What is needed to get the beam signal
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We might use these to get the beam signal:

Faraday cups
BPMs and capacitive pick-ups

WCMs
FBCTs



Wall image current

24

Any moving charged particle is accompanied with EM field:

FWHM ≈ 1.4a

γ

l [m]

λ
b
[C

m
−1
]

2a
v

r [mm]

B
[T
]

Skin depth dependent

Distribution of the mirror charge and flux lines

FWHM ≈ 1.4a

γ

l [m]

λ
b
[C

m
−1
]

2a
v

r [mm]

B
[T
]

Skin depth dependent

Distribution of the mirror charge and flux lines

E field looks as a pillbox for relativistic speeds and causes a charge
deposit on the inner wall of the vacuum chamber. Deposited
charge moves with particle and generates current = Wall Image
Current (WIC). B field gets attenuated



Non-intercepting & Wall image current
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As beam signal is “the source” of the information about the beam
charge, we need to intercept it

I couple to EM field produced by the beam current
I diverge the wall image current
I install the detector in the vacuum chamber

I Why?
I Electric field: cancelled
I Magnetic field: Attenuation by ≈ 8.7 dB by one skin-depth

length: non-magnetic conductor→ δ =
√
10·103
2π

√
ρ
f :

1 kHz 10 kHz 100 kHz 1 MHz 10 MHz

Copper [mm] 2.1 0.66 0.21 0.066 0.021

I 3mm copper tube: A≈50 dB @ 10MHz
I radio with ≈30dB dynamic range to intercept weakest beam

signal attenuated by 50 dB?
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Capacitive pick-up
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is(t)

Vo(t) R

b
a

C

h

ib(t)

+++++
--------

+++++
--------

Principle of capacitive pick-up

is(t)

Vo(t) R

b
a

C

h

ib(t)

+++++
--------

+++++
--------

Principle of capacitive pick-up

I conductive electrode subjected to charge deposit → charge
flows through R

I RC filter limits the BW (C includes cables if electrode
impedance not matched!)

I split the electrodes and you get capacitive BPM



Capacitive pick-up
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I sensitivity ≈ 10 nV/nA, resolution down to 20 pA/e

I Intensity measurement using sum signal:
∫
v(t)dt = Q · Z2 · Φ

2π
I sum suppresses first order position dependence
I using math third and fifth order can be eliminated as well, but:

Pick-up electrode size mattersPick-up electrode size matters

I Pickups/BPMs are many. Averaging over a ring increases
resolution (e.g. ESFR storage ring 224 BPMs  factor of 15,
Scheidt, MOPD64)



Button pick-up

30

Possible realisationsPossible realisations



Non-DC: What is needed to get the beam signal
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We might use these to get the beam signal:

Faraday cups
BPMs and capacitive pick-ups

WCMs
FBCTs



To measure intensity using WCMs

32

is(t) R

ib(t)

Ceramics insertion

vs(t)

2a

FWHM ≈ 1.4a

γ

LHF

LLF

Cgap

Wall Current Monitor

is(t) R

ib(t)

Ceramics insertion

vs(t)

2a

FWHM ≈ 1.4a

γ

LHF

LLF

Cgap

Wall Current Monitor

I Direct measurement of a wall current

I Bandwidth from few kHz to tens GHz range (e.g. RHIC 3 kHz
to 6 GHz, Cameron, PAC99)



Practical implementation ...
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WCM for CERN CTF3, Odier, P. DIPAC2003, D’Elia, EPAC08WCM for CERN CTF3, Odier, P. DIPAC2003, D’Elia, EPAC08

I BW≈100kHz-20GHz
I Ferrite to diverge LF via external bypass
I signal from 8 feedthroughs combined using resistive combiners



Practical implementation ...
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Suwada, T., KEKSuwada, T., KEK

I 2.5Ω ceramics resistance (Alumina+carbon powder)
I 4 pick-up electrodes + combiner
I up to 2.5GHz BW



Non-DC: What is needed to get the beam signal
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We might use these to get the beam signal:

Faraday cups
BPMs and capacitive pick-ups

WCMs
FBCTs



To measure intensity using FBCTs
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R0

Ns

RF connection

Measurement output

ib(t)

Ceramic gapNp

50ΩCalibration input

Fast Beam Current Transformer

R0

Ns

RF connection

Measurement output

ib(t)

Ceramic gapNp

50ΩCalibration input

Fast Beam Current Transformer

I Bandwidth from few Hz to GHz range
I typ. resolution 2-5 pC, but sub pC optimisations ongoing

(< 1 pC see Werner, MOPD65)
I measurement winding optimised to match cable on HF
I Not always High-µ material (ex. Reeg, H., GSI, FCT using

Ferroxcube 3E25, τ ≈ 1 µs)



To measure intensity using FBCTs
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ib(t)

Ls = L0 · n2

R

C
Vc

I(t) = c1e
−λ1t + c2e

−λ2t, λ1,2 =
R

2Ls
±

√√√√√√√
R2

4L2
s

− 1

LsC

is(t)

1 : n

FBCT equivalent lumped circuit

ib(t)

Ls = L0 · n2

R

C
Vc

I(t) = c1e
−λ1t + c2e

−λ2t, λ1,2 =
R

2Ls
±

√√√√√√√
R2

4L2
s

− 1

LsC

is(t)

1 : n

FBCT equivalent lumped circuit

Works as RLC circuit, can be used in two measurement modes:

I R2

4L2
s
− 1

LsC
> 0: time constant τ = Ls/R,

Is = Ib/n→integrated signal related to charge

I R2

4L2
s
− 1

LsC
< 0: C charged during pulse, then resonant

discharge→ discharge amplitude proportional to # of charges
(e.g. Clarke-Gayther, EPAC96)



Practical implementation ...
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Resonant-mode FBCT:

Reeg, H., Resonant mode BCT for GSI HEBT linesReeg, H., Resonant mode BCT for GSI HEBT lines

I peak detector to detect the voltage over capacitor
I 4 dynamic ranges down to 10 pC resolution

I offset/zero value fluctuations due to noise rectification of the
peak detector circuit

I precision of calibration due to uncertain coupling efficiency of
single turn cal. winding



Non-DC: What is needed to get the beam signal
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We have used one of these to get the beam signal:

Faraday cups
BPMs and capacitive pick-ups

WCMs
FBCTs

and we get this ...

Missing DC component must be compensated

t [ns/µs]

I b
[A
]

Beam signal provided by above devices, τ short wrt beam repetition

Missing DC component must be compensated

t [ns/µs]

I b
[A
]

Beam signal provided by above devices, τ short wrt beam repetition

and then we have to process it by the electronics ...



Non-DC: processing electronics
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like this ... (electronics guy prefers FPGA over Matlab)

Numeric
processing

BLRADC Application
FPGA

Memory

VME64x
controller

Signal processing

Numeric
processing

BLRADC Application
FPGA

Memory

VME64x
controller

Signal processing

Note: BLR = Base Line Restorer
This method work only if sampling rate is appropriate.



Non-DC: processing electronics
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ADC BLR

Dynamic range
non-linearity

residual offset
slew-rate and BW

Dynamic range
INL & DNL

sampling rate
resolution

Based on beam
temporal
properties

(e.g. bunch pattern)

 NOISESystematic

Application
FPGA

Memory

VME64x
controller

Signal processing

ADC BLR

Dynamic range
non-linearity

residual offset
slew-rate and BW

Dynamic range
INL & DNL

sampling rate
resolution

Based on beam
temporal
properties

(e.g. bunch pattern)

 NOISESystematic

Application
FPGA

Memory

VME64x
controller

Signal processing

Base line restorer must be based on temporal properties of the
beam: one must know, where the beam cannot be. However,
working with integrated value makes restoration more difficult →
maybe doing that before integration is a good idea ...

BTW: this is the LHC FBCT system



Non-DC: processing electronics
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ADCBLR

Dynamic range
non-linearity

residual offset
slew-rate and BW

Dynamic range
INL & DNL

sampling rate
resolution

 NOISESystematic

Application
FPGA

Memory

VME64x
controller

Signal processing

ADCBLR

Dynamic range
non-linearity

residual offset
slew-rate and BW

Dynamic range
INL & DNL

sampling rate
resolution

 NOISESystematic

Application
FPGA

Memory

VME64x
controller

Signal processing

BLR & integrator are analogue processing blocks, difficult to tune
...



Non-DC: analogue BLR example
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Schottky diode based analogue BLRSchottky diode based analogue BLR

t[ns]

t[ns]

t[ns]

Vc(t)

Von(t)

Vt(t)

Sampling points

BLR signals

t[ns]

t[ns]

t[ns]

Vc(t)

Von(t)

Vt(t)

Sampling points

BLR signals



Non-DC: analogue integrator example
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Streaming data integration

Well, very complex for such small thing as integrator



Devices calibration
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Faraday cups electronics chain calibration by DC current
Pickups compared to DCCTs or FBCTs, or to Faraday cup
WCMs compared to DCCTs or FBCTs, or to Faraday cup
FBCTs absolute calibration using current or charge source

Matching the measurement result with known current/charge
permits to calculate gain.
DC current sources of no-use for FBCTs → require pulsed source,
calibration signal discharged into calibration turn.

t [µs]

V [V ]

∆t

NP =
∫∆t
0 i(t)dt

e = C·Vc
e = k · 〈acquired value〉

Charge mode calibration

Vc

t [µs]

I [mA]

∆t

Ic

NP = Ic·∆t
e = k · 〈acquired value〉

Current mode calibration

Two pulse-mode calibration methods

t [µs]

V [V ]

∆t

NP =
∫∆t
0 i(t)dt

e = C·Vc
e = k · 〈acquired value〉

Charge mode calibration

Vc

t [µs]

I [mA]

∆t

Ic

NP = Ic·∆t
e = k · 〈acquired value〉

Current mode calibration

Two pulse-mode calibration methods

Absolute accuracy of 1 to 5 % of the measurement full scale.



Pulsed current source
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for those interested, e.g.:

VHV

HV off

ADC

HV
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RlRel
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Cc

Rd

Q2Q1

ADC

Ic
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Icalib
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LoadInPrecharge
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Cc

t[ns]

ILx
[A]

Pulsed current sink

VHV

HV off

ADC

HV
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Q2Q1

ADC
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Pulsed current sink



Calibration by charge
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for those interested:
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iLx
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Q = Cc ·HV

VHV
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ADC
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Q2
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Charge-type calibrator



Concluding Non-DC electronics components
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There are of course other methods how to obtain the charge
information from the beam signal acquired by discussed devices,
e.g.:

I observation of initial amplitude of resonant-mode transformer

I observation of specific harmonic frequency of the beam

I integrating current transformer (e.g. Vos., SL/94-18, CERN)

I dark current monitor (see today’s talk of D. Lipka, WEOC03)

See the references section at the end of this presentation ...
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DCCT design issues
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I Modulation current/voltage:
I what signal: triangular, sine, square
I high voltage/current amplitude to drive cores into saturation
I generator signal purity (minimise even components of fmod)

when non-linear load
I Choice of modulation frequency limits the modulator BW:

I crystalline material (NiFe): few hundreds Hz
I amorphous/nanocrystalline material (Fe, Co-based): few kHz

I Magnetic material used:
I µr ≥ 50000

I low BH curve area

I low coercive field
Hc ≈ 1 A/m

I wound using combination
of mg. material + Mylar
(typ. 20/5 µ ratio) to
minimise eddy current
losses

I low magnetostriction

I small magnetic domains to
minimise Barkhausen noise

B-H granularity ! mg. domains sizeB-H granularity ! mg. domains size



DCCTs usage & limitations
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To be used for precise DC current measurements

I measures everything: debunched, ghost and satellites,
circulating beams

I due to feedback linear over 6 decades

I FS=〈10mA; 100A〉, resolution down to 1 µA, BW≤50 kHz

Calibration mostly using commercial DC current sources:

I Yokogawa GS200: accuracy ±0.03 % of setting + 5 µA

I Keithley 224: accuracy ±0.05 % of setting + 10 µA on 20 mA

Development heading to resolve:

I offset suppression & temp. dependence (≈ 5 µ A/K)

I material procurement



DCCT - material procurement is fancy stuff
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H. Reeg: B-H curve measurements, Vitrovac 6025FH. Reeg: B-H curve measurements, Vitrovac 6025F

Vitrovac ordered with the same specification at different time.
(VacuumSchmelze production technology didn’t change!)



Interesting study: MR sensors
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Usage of magneto-resistance (GMR, AMR) and
magneto-impedance sensors to get the beam info: GSI novel-DCCT

Häpe, M. et al., DIPAC2005Häpe, M. et al., DIPAC2005

Beam currents in hundreds-A range, clip-on configuration



Invite you to see next talk by Wolfgang Vodel

Overview on Cryogenic Current Comparators for Beam Diagnostics

THANK YOU FOR YOUR ATTENTION

This presentation would not be possible without kind participation of many
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