Study of ECRIS scaling laws with the Particle-in-Cell Code

V.E. Mironov FLNR JINR Dubna

Outline

- Description of the model
- Basic responses: gas flow, RF power, spatial distributions
- Response to variations in the magnetic field (scaling laws)
- Conclusions

Particle-in-Cell

Monte-Carlo collisions

- Electron heating and ionization <- electron density from requirement of a quasineutrality
- Atomic processes: ionization, chargechange, recombination, neutralization in collisions with the chamber walls
- Ion-ion collisions: Takizuka-Abe model

Key assumption: mirror-confined volume

Electrons are drifting in the magnetic field of the source forming a set of closed orbits.

Grad-B drift

$$\vec{v}_{\nabla B} = \frac{\epsilon_{\perp}}{qB} \frac{\vec{B} \times \nabla B}{B^2}$$

No electric fields in the volume except small regions close to the walls – in the sheath

Classical flux

Density gradient

Classical fluxes

- lon-ion collisions: higher charge states are pushed inward
- Electron-ion collisions: outward transport (ambipolar)
- To model the e-i collisions: ions are kicked in a random direction with the corresponding dV.
- Then, we make a small correction to direction of dV that depends on the density gradient and Larmor radius of electron.

Gas temperature

When ion hits the chamber wall, it is neutralized

If not in extraction aperture, ion is scattered back with an angular distribution according to the cosine-law (diffuse scattering)

Fraction of the backscattered singly charged ions is

Energy distribution of neutralized atoms - room temperature, full accommodation

Inputs

- Magnetic field: POISSON + analytical hexapole component (hard edge) – KVI AECRIS
- Coupled microwave power -> electron temperature
- Gas flow into the chamber = flow into the extraction aperture

KVI A-ECRIS layout and performance

Al plasma chamber, hexapole with the slits for better pumping of the chamber.

RF frequency 14+(11-12.5) GHz

- B_{inj}=2.1 T, B_{min}=0.36 T
- B_{ext}=1.1 T, B_{rad}=0.85 T
- Chamber length 30 cm
- Chamber diameter 7.6 cm
- Extraction aperture 0.8 cm

Q	С	0	F	Ne	Ar	Q	Pb
1	11		67	105	55	23	19
2	40		134	158	69	24	25
3	270		159	245	61	25	29
4	187	-	183	394	75	-	-
5	61		188	590	119	27	26
6	~5	700	107	446	174	28	19
7		110	55	224	275	29	16
8				87	488	30	9
9					250	31	5
10					-		
11					20		

Typical spectrum (argon)

lons at the extraction electrode

Gas density at the center

Ion density at the center

Ion density at the center

Gas density in x-y plane

Ion density in x-y plane

Ion density in x-y plane

Ion density at extraction

Ion density at extraction

RF power@ the same gas flow

Gas-flow @50 W of RF

Argon 50 W

Minimum field

Minimum field

Fig. 3. Beam intensity of Ar^{9+} as a function of B_{\min} at the RF power of 100 and 280W.

第 31 卷 增刊 I 2007 年 7 月 高能物理与核物理 HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS Vol. 31, Supp. I Jul., 2007

$\label{eq:magnetic Field Configuration Effect and New ECRISs for \\ RIKEN RIBF Project$

T. Nakagawa¹ M. Kidera¹ Y. Higurasi¹ J. Ohnishi¹ T. Kageyama¹ T. Aihara² A. Goto¹ Y. Yano¹ (Nishina Center for Accelerator Based Science, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198, Japan)
2 (SAS Ltd, Ohsaki 1-17-6, Sinagawa-ku, Tokyo, 141-0032, Japan)

Extraction field

Extraction field

FIG. 12. Evolution of Xe²⁰⁺ with the extraction magnetic field at different frequencies.

Injection field

Injection field

FIG. 11. Evolution of Xe^{20+} with the injection magnetic field.

Hexapole field

Hexapole field

FIG. 4. Output currents of Ar^{8+} and C^{4+} for 10 GHz NIRS-ECR with radial magnetic fields $B_r = 0.95$, 1.05, and 1.3 T.

REVIEW OF SCIENTIFIC INSTRUMENTS

VOLUME 73, NUMBER 2

FEBRUARY 2002

Study of the extracted beam and the radial magnetic field of electron cyclotron resonance ion source at HIMAC

A. Kitagawa, ^{a)} M. Muramatsu, M. Sasaki, and S. Yamada National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan

S Rir

Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem ter 18/C, Hungary

K. Jincho, T. Okada, T. Sakuma, W. Takasugi, and M. Yamamoto Accelerator Engineering Corporation, 2-10-14 Konakadai, Inage, Chiba 263-0043, Japan

Chamber size

Chamber size

FIG. 3. Output currents of Ar^{7+} , Ar^{8+} , and Ar^{9+} for 18 GHz NIRS-HEC with R = 46, 66, and 80 mm.

R stays for a diameter here!

Chamber size: hexapole field

Chamber size: hexapole field

Conclusions

- General behavior of the source is reproduced (gas flow, RF power, magnetic field)
- Hexapole field can be too strong
- Plasma chamber can be too large
- Minimum B this is a good idea to tune Bmin, preferably by using the flat profile
- Gas temperature the higher, the better.