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Abstract 
Some modern projects of the new generation light 

sources use the conception of multipass energy recovery 
linac with split (CEBAF-like) accelerating structures [1 - 
5]. One of the advantages of these light sources is the 
possibility to obtain a small bunch length. To help reduce 
it, the longitudinal dispersion should be non-zero in some 
arcs of the accelerator. However small deviations in 
voltages of the accelerating structures can be enhanced by 
induced fields from circulating bunches due to the 
dependence of the flight time on the energy deviation and 
the high quality factor of the superconducting radio-
frequency cavities. Therefore, instabilities caused by 
interaction of electron bunches and fundamental modes of 
the cavities can take place. The corresponding stability 
conditions are discussed in this paper. Numerical 
simulations were performed for project MARS [4].  

INTRODUCTION 
The scheme of an ERL with two accelerating structures 

is shown in Fig. 1. 

 

Figure 1: Scheme of ERL with two linacs. 

Electrons are injected to the linac 1. After two passes 
through linac 1 and linac 2 they are used, for example, in 
undulators. After that electrons are decelerated. 

There are four electron beams in each linac 
simultaneously. Each beam induced large voltage in the 
linac, but the sum is not so large. If the phases of the 
beams vary, the sum voltage also varies, and initially 
small phase deviation may increase due to the dependence 
of flight times through arcs on the particle energy. This 
longitudinal instability is considered in our paper. 

THEORY 

The Voltage Equations 
To simplify the picture, consider each linac as one RF 

cavity. Its equivalent circuit is shown in Fig. 2. 
The gap voltage 

expression ( ) dtRUdtdUCIIdLU gb −−+= , Ib 

and Ig are the currents of the beam and of the RF 
generator, leads to the standard equation 
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Taking the effective voltage on the linac with number α 

in the form )Re( tieU ω
α

−  (ω is the frequency of the RF 

generator), one obtains: 
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Figure 2: Equivalent circuit of the RF cavity. 

where ωξω ααααα )2/1(/1 QCL −==  is the 

resonant frequency, αααα CLRQ = >>1 is the 

loaded quality of the cavity, CLQR == αααρ /  

and αR  are the characteristic and the loaded shunt 

impedances for the fundamental (TM010) mode, and 

αα gb II  and  are the complex amplitudes of the beam 

and (reduced to the gap) generator currents 
correspondingly. We are interested in the case of 

constant αgI . The beam currents αbI  depend on all U
α
 

due to phase motion. Linearization of Eq. (2) near the 
stationary solution  
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Strictly speaking, Ib depends on the values of U at 
previous moments of time, so Eq. (4) is valid only if the 

damping times ωαQ  are much longer than the time of 

flight through the ERL. 

The Stability Conditions 

Considering the exponential solutions ( )2exp tωλ  of 

system of linear differential equations Eq. (4), one can 
find the stability conditions. Indeed, the system Eq. (4) 
corresponds to the system of the linear homogeneous 
equations UMU δλ =δ  with the consistency 

condition 0=− EM λ . Re(λ) < 0 for all roots of this 

equation (i. e., eigenvalues of the matrix M) is the 
stability condition. 

The stability condition for ERL with one linac was 
derived in paper [2]. In this case 
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and the characteristic equation is 

( ) 02 =+− MMTrλλ   (6) 

According to Eq. (5) the stability condition is 
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One can say, that the beam “active conductivity” 

( ) 2ImImReRe UIUI bb ∂∂∂∂ +  has not to 

exceed the linac active conductivity ( ) 1−Qρ . 

For the ERL with two linacs 
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and the characteristic equation is (see, e. g., [6]) 
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4 AS  are the sums of main 

minors of the matrix M. The necessary conditions for 
stability (Re(λ) < 0 for all four roots of Eq. (9)) is 
positivity of all the coefficients of the polynomial Eq. (9). 
In particular, the only independent on detunings ξ1 and ξ2 
condition S1 < 0 gives 
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      (10) 
The sufficient conditions are given by the Liénard-

Chipart criterion [6]. It requires the positivity of of all the 
coefficients of the polynomial Eq. (9) and the third 
Hurwitz minor 

( ) 0,0,0,0 2
3413213421 >−−=Δ>>< SSSSSSSSS  (11) 

In the simplest case of the isochronous ERL arcs the 
conductivity matrix is zero. Then it is easy to proof, that 
all stability conditions are satisfied. 

As the qualities of the superconducting cavities are 
very large, it is interesting to consider the opposite 
limiting case, neglecting small terms 1/Q1,2 in the matrix 
Eq. (8). Then all stability conditions do not depend on the 
beam current. They depend only on the ratio ρ1/ρ2 and the 
beam conductivity matrix, which is fully defined by the 
ERL magnetic system. 

The Conductivity Matrix 
To proceed further, we have to specify the elements of 

the beam conductivity matrix in the stability conditions. 
The complex amplitude of the beam current Ib may be 
written in the form 
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where I is the average beam current, ϕ2n+α-1 is the 
equilibrium phase for the n-th pass through the resonator 
with the number α (α = 1, 2), and N is the number of 
orbits for acceleration. The small energy and phase 
deviations εn and ψn obey the linear equations: 

( )[ ] ( )[ ]nn i
nn

i
nnn eUeeUe ϕ

α
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α δψεε −−
+ ++= ReIm 01 , (13) 
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n

nn dE

dt εωψψ ,   (14) 

where 

( ) ( ) 10212,12 −≤≤=+= Nnfornn αα and 

( ) ( ) 12112,22 −≤≤=+= NnNfornn αα . 

( )ndEdt /  is the longitudinal dispersion of the n-th 180-

degree bend. The initial conditions for the system of Eqs. 
(13) and (14) are, certainly, ε0=0 and ψ0=0, if we have no 
special devices to control them for the sake of the beam 
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stabilization, or other purposes. The solution of Eq. (13) 
and Eq. (14) may be written using the longitudinal sine-

like trajectory Snk and its “derivative” Snk
'  (elements 56 

and 66 of the transport matrix). These functions are the 
solutions of the homogenous system  
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with the initial conditions Sk,k = 0, S'k,k = 1. Then 
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Substitution of Eq. (20) to Eq. (15) gives 
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For an ERL it needs to satisfy (at least approximately) the 
recuperation condition  

( )

( ) 0Re

0Re

1

0
02

1

0
01

22412

1242

=⎥
⎦

⎤
⎢
⎣

⎡ +

=⎥
⎦

⎤
⎢
⎣

⎡ +

∑

∑

−

=

−−

−

=

−−

−−+

−−

N

n

ii

N

n

ii

nNn

nNn

eeU

eeU

ϕϕ

ϕϕ

 (20) 

For the longitudinal stability it also needs to have 
longitudinal focusing for most of passes through the linac 
(see Eq. (12, 13)): 

( )[ ] 0Im 0 <− neUe n
ϕ

α   (21) 

if all ( / )dt dE n > 0 ). Conditions Eq. (20) and Eq. (21) 

may be satisfied simultaneously, if ( 120 −≤≤ Nn ) 
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which leads to  
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Conditions Eq. (23) affords equality of beam energies 
after n-th and (4N-n)-th passes through a linac. 

The Threshold Current  
To make the stability condition Eq. (10) more explicit, 

consider a simple example. Assume that equilibrium 
phases are equal during acceleration. In this simplest case 

( ) ( ) 202121012  arg- , arg- Φ=Φ= + eUeU nn ϕϕ  for 

10 −≤≤ Nn . Eq. (20) defines the equilibrium phases 
for deceleration. Then Eq. (19) gives 
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SIMULATIONS  

The Induced Voltage 
To simulate the instability evolution one can use the 

turn-by-turn calculations of the voltage induced by each 
bunch. Passing through the cavity the electron excites the 
voltage oscillations on the cavity resonance frequency rω . 

Considering the bunch as the point with charge q one can 
calculate it induced voltage [9]  

||( ) cos( )exp( ) ( )
2

r s r
r

R
V t q t t H t

Q Q

ω ωω= −  (25) 

where sR  is the shunt impedance, Q is the loaded quality 

factor, )(tH  is Heaviside’s step-function. As the 

recirculating frequency of the generator is close to 
resonance, but not equal, electrons will see the phase of 
induced voltage by previous bunch slightly changed. 
Let’s consider two electron bunches pass the cavity from 
the same magnet arc. The distance difference between 
them is gcT  (considering the equal frequencies of the 

cavity and gun), the reference phases are the same and its 
deviations are 1δφ , 2δφ respectively: 

Nnnt refg ∈++= ,2 2,12,1 δφφπω  

Therefore the 2-nd bunch will see the induced voltage by 
1-st bunch with phase 

( ) ( ) ( )[ ]212121 2 δφδφπ
ω
ωω

ω
ωω −+=−=−

g

r
g

g

r
r tttt (26) 

 

Figure 3. Frequencies in the bunch-cavity system  

In case of bunches from different arcs, i.e. with different 
reference phases, the voltage phase is  

( ) ( )[ ]
21 212121 )(2 NNrefref

b

r NN δφδφφφπ
ω
ωφ −+−+−=  

where N1, N2 – the numbers of RF-buckets. 
Induced voltage by Nb bunches at the times (t1,…,tNb) in 
complex form )(Re)( |||| tWtV =  is  
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This formula can be transformed in phasors representation 
as the production bunch complex current )(ti and 

complex voltage, induced by previous bunches with 
saturation and phase shift  
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where gcTL =Δ  is the distance between bunches. 

The time dependence of current and voltage transforms to 
phases as  
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Since the time of the saturation of the excited oscillations 
is much longer than gun period bunches can be united in 
groups by recuperation parameter (Fig. 4), where the total 
gain and induced voltages are close to zero 
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Accordingly the bunch will see the total voltage induced 
by previous N groups as 
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Figure 4. Recuperation groups of bunches: red – 
accelerating, blue - decelerating  

For each point-like bunch the energy phase system is 
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where )( nU δφΔ is additional energy received by electron 

with phase deviation nδφ , )(1 nnW δφ−Δ - additional 

energy due to the induced voltage by previous n-1 turns 
(30). 

The MARS Structure 
Numerical calculations were made for proposed 

structure of MARS [7,8] (Multipass Accelerator-
Recuperator Source) (the scheme is shown in Fig. 5).  

 

Figure 5: Scheme of MARS -  ERL with two linacs: 1 – 
injector, 2 – preinjection linac, 3 – main linacs, 4 – 

bending arcs with undulators, 5 – dump. 

Parameters of the main accelerating structures are: 

,10 6
21 == QQ  ,401 Ω= Kρ  ,K902 Ω=ρ  

9103.12 ⋅⋅= πω Hz, 8.01 =U GV, 8.12 =U GV. The 

transport matrix elements 1~56R m at all arcs. The 

dependence of the threshold currents calculated by 
stability condition (24) and by numerical simulation on 
accelerating phases Φ1 = Φ2. 

Simulations: without Preinjection Accelerating 
Structure 

To compare the theoretical limit of the beam current 
given by (24) and by wakes simulations it’s necessary to 
calculate system without preinjection.  

Simulations start with filling the accelerator trajectory 
by array of bunches without initial deviation. Bunches 
with appropriate numbers interact with cavities. After 
that, the unperturbed bunch is injected in the facility and 
the last one goes to the dump. The examples of the phase 
to time dependence are shown in Fig. 6 and Fig. 7. The 
deviation of the bunch phase is decreasing and increasing 
exponentially defining the stable and unstable operations.  

 

Figure 6: Example of the relaxation of the bunch’s phase 
after the last deceleration to the equilibrium value. 

4 4 

4 

3 

3 

1 2 5 
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Figure 7: Example of the unstable operation. 

Theoretical formulas (24) define the area of beam phases 
with extremely high threshold current. The comparison 
between simulated and theoretically calculated threshold 
currents is shown on Fig. 8. The numerical calculated 
current is much lower than that given by theory, but the 
areas of the maximum threshold parameters are 
correlated. The difference in the current values can be 
explained by second and high order terms: theory 
formulas use the linearization of the voltage-phase 
dependence (see (12), (13)), and near the zero reference 
phase the influence of the second order perturbations can 
be significant. 

 

Figure 8: Threshold current: blue – formula (24), green – 

wakefields simulations ( 1002,1 =ξ ).  

The Fig. 9 shows the comparison between the theory and 
simulations with high values of the reference phases.  

 

Figure 9: Threshold current: blue – formula (24), green – 

wakefields simulations ( 1002,1 =ξ ). 

The maximum values of the threshold currents should be 
at the highest detunings of the cavities (all conditions of 
the Lienard-Chipard criterion (9, 10) are satisfied, excepts 
the last one (24), which does not depends on detunings). 
Fig. 10 shows the thresholds currents at the highest 
detunings.  

 

Figure 10: Threshold current: violet – formula (24), red – 

wakefields simulations ( 10002,1 =ξ ). 

Simulations: with Preinjection Accelerating 
Structure 

The proposed scheme of the multiturn ERL (Fig. 5) has 
also the preliminary acceleration/deceleration system to 
reduce beam induced radiation and RF power 
consumption. Simplified scheme with one undulator is 
shown on Fig.11. 

 

Figure 11. Recuperation groups of bunches: red – 
accelerating, blue – decelerating.  1-injector, 2 – two 
preinjection linacs, 3 – main linacs, 4 – bending arcs, 5 – 
undulator, 6 – beam dump.  

Preliminary accelerating system consist of two linacs 
with energy gain 350 MeV and 40 MeV. Parameters of 

the linacs are: ,10 6
21 == inin QQ ,601 Ω≅inρ  

Ω≅ 5002inρ . On the Fig. 13 is shown the comparison of 

threshold currents calculated in the three cases: by 
stability condition (24), by numerical simulation without 
preliminary acceleration and with preliminary 
accelerating structure. 

The examples of the stable and unstable operations are 
shown on the Fig. 12 and Fig. 13. The threshold current in 
the case of the maximum cavities detunings is shown on 
Fig. 14. The current if lower than it for two linacs system, 
but however satisfy the necessary condition for the 
accelerator (higher than 10 mA). 
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Figure 12. Example of the stable operation: the voltage 
deviations at the main linac 

 

 

Figure 13. Example of the unstable operation: the voltage 
deviations at the preinjection linac 

F  

Figure 14: Threshold current: violet – formula (24), red – 
wakefields simulations, green – with  preinjection linacs  

( 10002,1 =ξ ). 

CONCLUSION  
In this paper we derived the criterion of the longitudinal 

stability for the ERL with two accelerating structures. 
Numerical calculations specify stability phase region with 
high threshold current for the accelerating cavities of 
accelerator with two linacs. 

Numerical simulations were made light source projects 
based on multiturn ERLs. The simulated threshold current 
is lower than the theoretical lower limit in the areas of the 
maximum current. To increase the threshold current, it is 
necessary to develop a proper feedback system. 
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