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e Our long-term goal is to build an ERL-based x-ray light
source to replace our existing machine (CESR/CHESS).

e Our proposal is complete and ready to go . ..

* In the meantime, we are working on prototypes for the
Injector, SRF cavities, and undulators, plus gun and
cathode R&D

Bruce Dunham, Cornell University
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ERL - Injector Prototype
b photocathode

deflector cryomodule DC gun
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ERL Injector Prototype:
Achievements to date:

» 75 mA average current @
4 MeV

»0.3 um emittance @ 77
pC, 8 MeV

Bruce Dunham, Cornell University
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Parameter mm_

Average Current 100 mA 75 mA (1300 MHz)

Bunch Charge 77 pC :] Pulsed mode (50 MHz)

Energy 5to 15 MeV S 14 MeV max (due to cryo limits)

Laser Power >20W :] > 60 W at 520 nm (1300 MHz)

Laser Shaping beer can dist. | Adequate for now

Gun Voltage 500 kV (] Currently operating at 350 kv
Emittance <2 pum (norm, rms) (] Ultimate ERL goal 0.3 um, with merger
Operational > 1 day (] Recentimprovements with new cathodes
Lifetime

Bruce Dunham, Cornell University
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Emittance Measurement Results

Bruce Dunham, Cornell University
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Goals for Experiment

Measure low emittances at the end of the merger
Emittances < 0.3 micron, bunch Length < 3 ps, energy Spread ~ le-3

Demonstrate ¢, o \@ , take 19 pC and 77 pC data, corresponds
to 25 and 100 mA

Demonstrate agreement between measurement and simulation
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quadrupole magnets
cryomodule with 5 srf cavities buncher DCgun
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Baseline Measurement at ‘zero’ charge

Three methods for comparison

Measurement Horizontal Vertical
Emittance Emittance
[microns] [microns]

Solenoid Scan after the gun (350kV) 0.12 0.11

Projected emittance (EMS) in merger(8 MeV) 0.11 0.12

Slice emittance (EMS) in merger (8 MeV) 0.11 N/A

Bruce Dunham, Cornell University
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0 pc 19 pc 77 pc Projected Emittance for 19 (77) pC
" _ | | | @ 8MeV:
data  Vertical Vertical Phase Space
s | NN Q
§ Data Type | en(100%) en(90%)
< [microns] [microns]
= GPT T
. Projected 0.20(0.40) 0.14(0.29)
: (EMS)
s GPT 0.16(0.37)  0.11(0.25)
o 2 y(mm) B 10
120 1.ea Horizontal Horizontal Phase Space
. ——— : Il Data Type | en(100%) en(90%)
5 [microns] [microns]
S l
(@)
X Projected  0.33(0.69) 0.23(0.51)
< GPT | (EMS)
| GPT 0.31(0.72)  0.19(0.44)

2.5 3

*C Guilliford, et al, PRST-AB 16, 073401 (2013)

X (mm)
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GP’T:mt = 3.1 ps, data: o = 3.0ps

[—aPT
sl (1 pC ﬂo | © data
— _ 6
< <
£ [=
g £ 4
3 3
2
-15 =10 -5 0 5 10 15 -15 -10 -5 0
Time (ps) Time (ps)
0.22 —
— 90% =
0.2 |- - ~core | .48
0.18
0.4
0.16
0.35
3 0.14 19 pC £
= e m - = 03
w 012 - ‘. ~
= U S - - A s
0.1 , ——— ' 0.25
0.08 . ¥ 0.2
0.06f." LN 0.15
0.04 ) 0.1
-4 =3 =2 =1 1] 1 2 3 4 -6 -4 -2 0 2 4 [
Time (ps) Time (ps)

Bruce Dunham, Cornell University 10



Cornell Laboratory for

Accelerator-based Sciences and GPT —_ M aChl ne I nterf aCe

Education (CLASSE)

GPT Virtual Accelerator GUI: load machine settings, load optimizer settings,
save/restore, independently simulate machine in (near) real time

L] SiE)
DEdS bR OBDEL- 2|02 | B
- Beamline and Save/Restore = —GPT Simulation Settings—— - Calculated 5ettings— ~Run GPT Simulation
Name Value \ Units. Beam Energy:
Select Beamline Type , nps 20000 [#] 7.154 Mey. Phase GPT <—0r —>  Just Set Energy Run GPT
= Otot _77[pC
alaza3bl | space charge 100/1] E;ergy is sedt_durln?j \ 1 particle, no space charge ~ no space charge - Remember to rephase if cavity
beyrms 0.4700 [mm] Ipozse‘tngisg\eléu:r:nt?n ¥ — Accurate within few tenths of degree - Assumes user knows what he is woltages or relative phases are
Lofd Saved Settings rms 7.9610 [ps] ~ Phases a cavity on crest, then sets doing and just runs the code changed!
xoffset 0[mm] o 2 it off crest (as desired) before through A2 to set the final energy,
Pinhole Diameter: phasing the next cavity
\offset 0[mm]
Save Settings global_phase 0 [deg] 2 mm
dtmax 100 [ps] Assumes a Gaussian
FinalCamma E A profilz truncated at 50% _ Plot Data
Load Machine State couplers 1[0/1] IEnE Ly — Screen Options —9DFlatStle—" Denfit
PlotType: Name: BllstSlit |l g pancity Seale &J
Type: X Phase Space | _Scatter 50 _IMake new figure
—Beam Element Settings _ R )
R At e s et s .f\‘i\v‘f:\:Jj:rw‘:w“\'\a‘!l:l;‘:‘:w ljficai B1 15t Siit viewscreen, at z = 12.34 meters, £, = 1.08 mm-mrad, 6, = 0.104 mm, Eﬁﬂ {1000y = 122 "
Element \ PV Name \Cummand Va\uE|ReadbacKValuE| Units__[Simulation Va\ua\ Units \ Z Position |
GALCVHO1 Gun Voltage 343.3000 345.3000 (kV) 343.3000 (kV)
MALSLADL Current -3.7000 -3.7069(A) 0.0303(T) 0.3030 35
RALCTEOL Cavity Voltage 60 BO(kV) 0.9569 (MV/m) 0.7140
RAICTEOL On-—crest Cavity Phase 1758100 175.8100(deg) 148.4674 0.7140
RALCTEOL Relative Cavity Phase -90.0000 -90.0000 (deg) -90.0000 0.7140
MA1SLAOZ Current 2.3000 2.3023(A) ~0.0192(T) 1.1280 L 3
7_|RA2CTCOL Cavity Voltage 1491 1491(kV) 12,7983 (MV/m) 2.0470
RAZCTCOL On-—crest Cavity Phase -61,2000 -61.2000(deg) 3.1949 2.0470
RA2CTCO1 Relative Cavity Phase -10.0000 —10.0000(deg) -10.0000 2.0470
RA2CTCO2 Cavity Voltage 1900 1300(kV) 16,3090 (MV{m) 2,8330 res
RAZ2CTCO2 On-crest Cavity Phase 43,2000 43.2000(deg) 356.1229 2,8330
RA2CTCO2 Relative Cavity Phase et -7.0000 (deg) ] 2,8330 =
RA2CTCO3 Cavity Voltage 1.3860e+03  1.38602+03(kV) 11,8970 (MV/m) 3.6960 2
RAZCTCO3 On—crest Cavity Phase 16£1,0900 161.0900 (deg) 256.8649 3.6960 z [ e
RA2CTCO3 Relative Cavity Phase -3.6621e-06 -3.6621e-06(deg) -3.6621e-06 3.6960 =2
16 |RA2CTCO4 Cavity Voltage 1386 1386 (kW) 11.8970 (MV/m) 4.4820 2
_17 |RA2CTCO4 On-crest Cavity Phase 97.1322 97.1322(deg) 284.5580 4.4820 L dis
RA2CTCO4 Relative Cavity Phase 2,1484e-06  2,1484e-06(deg) 2.1484e-06 4.4820
RAZCTCOS Cavity Voltage 1500 1500(kV) 12,8755 (MV/m) 5.3450
RA2CTCO5 On-crest Cavity Phase 47,4085 —47.4085(deg) 193.1202 5.3450
RA2CTCOS Relative Cavity Phase -20 -20.0000(deg) -20 5.3450 10
MAZQUAOL Current -3,8000 -3.8014(A) -3.0330(T/m) 6.5421
MAZQUADZ Current 9,8000 9.8020(A) 7.8375(T/m) 7.1421
MAIQUADZ Currant 4.9000 4.8950(A) 3.9187(T/m) 7.7421
MAZQUAD4 Current -8.5000 —-8.4944(A) -6.7978(T/m) 8.3421 5
26 |MB1QUBO1 Current 9.3000 9.31B8(A) 7.8112(T/m) 9.7906
7 |MB1QUEDZ Current 9,3000 9.3281(4) 7.8112(T/m) 10,3296
o
-1.6 -1.5 -14 13 -12 21 = b -089 -08 -07
|  position (mm)
Status: Ready

Bruce Dunham, Cornell University
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Coupler antennas only in x-direction!
No dipole kick, but we see ‘quadrupole’ focusing

Bruce Dunham, Cornell University
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e Existing software allows magnetic or electric boundary conditions
e Create traveling wave as superposition

E = E +E B= I§+ +B.
E Ai |(+kx+a)t)f.‘ §+ _ $iei(ikx+a)t)é
r - Ccr
Ey=0 B, =0

e m

NN | E = A sinof SNV | Em = A costior

I I

AV I§e=iicos(kx)67 AV I§m:—iA—sin(kx)é

Cr L Cr

.
.

e Normalize result to match real forward and reflected power

Bruce Dunham, Cornell University
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e Strong asymmetry after first cavity couplers

 Beam size asymmetry is accurately reproduced in the lab
e At minimum y emittance, the x emittance is 2x larger
This is for a beam straight ahead (no merger)
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e Optimize emittance using a using a genetic algorithm

* In the merger, the emittance asymmetry can be (mostly)
removed, using the asymmetry provided by the dipoles

* Also, optimizations show that a beam energy of 12-13 MeV
IS needed to maintain minimum emittance in x/y before
Injection into the main linac

> Simultaneous

2.5 ! 1 T ! {
—X I I | good emittance!
2 — I 1
=) - |
© I
£ 15 l
£ |
E
TR '
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E 05 |
I
, l , , A
0o
(o) 2 4 6 8 10 12

Distance (meters)

Bruce bunnam, cornell university
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Aligning the magnetic and
electrical centers of all elements
to the beam axis is crucial for
obtaining low emittance and
minimizing aberrations.

Procedure:

1.Align laser at cathode center
2.Center on buncher using correctors
(+/- 10 um)

3.Center on first 2 SRF cavities using
correctors (+/- 10 um)

4.Center solenoid #1 by physical

% adjustments (+/- 50 um)

Had to add remote 5.Center solenoid #2 by physical
control of the solenoids adjustments (+/- 50 um)

Bruce Dunham, Cornell University
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*Alignment

sLaser shaping

*Accurate simulation tools + genetic algorithm
optimizations

*Adequate number of ‘knobs’

*Gun voltage: 350 kV is adequate, optimum value
IS ~450kV (for our system)

*\We are already very close to recovering the
cathode thermal emittance! Better cathodes are
needed!

Bruce Dunham, Cornell University
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High Current Results

Bruce Dunham, Cornell University
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What is important for running high currents?

*Halo is a major problem (tuning, radiation shielding and machine
protection)

Beam dump monitoring and protection

*Fast shutdown — want to block the laser before anything else trips . . .
«Catching transients (due to FE, ions, scattering, ...) for troubleshooting
*RF trips (mostly due to couplers)

*Feedback for bunch charge, laser position and beam orbit

«Current measurement

Measurements of RF response to the beam, HOM’s

*Monitoring HV power supply ripple and frequency response

*VVacuum monitoring, fast and slow

*Personnel protection

*Overall machine stability

Bruce Dunham, Cornell University
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100 mA 100 pA 100 nA 100 pA

Design current: Phase space measurements: Beam setup: viewers, Halo, cathode lifetime:
Non-intercepting or minimally ~ Non-intercepting or fully cameras viewers, PMT’s
intercepting diagnostics intercepting diagnostics

N \ N\ =) 106to 10°
103 103 103

A viewer with a hole for imaging halo

Bruce Dunham, Cornell University
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To ‘calibrate’ the beam loss , used radiation measurements —
steered a 50 pA, 5 MeV beam onto a beam pipe

=

Gamma probe

50 pA/5 MeV produces about 10 mSv/hr at an external gamma probe
For the best beam setup, we typically observe from 0 to 40 mSv/hr

along the length of the beamline. From this, we estimate a total beam
loss of ~1 nA out of 50 mA, or 2x108

Bruce Dunham, Cornell University
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Non-recoverable QE damage on GaAs at the
cathode center (at high current)— cannot be
recovered by heat treatment and reactivation

Cause of Damage?

elon Backbombardment
lon implantations

*Rise in vacuum pressure
*Field emission/arcing

dn o

QE(%)
w

- m

Conclusion: The cathode center
cannot be used for high current
operation

Bruce Dunham, Cornell University
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Dead area (brown) Local ion

Active area

lon damage at (4 Spots)
the center

Laser location v

Bruce Dunham, Cornell University
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Now: the cathode we use has 5o
a single active area offset a5
from the center

—total charge: 204.7 c
first 50mA!! i
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before after time

Highest ever average current
from a GaAs photocathode!

Bruce Dunham, Cornell University
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Large bump in the middle from ion damage! Eventually
causes field emission, making the cathode unusable

Bruce Dunham, Cornell University
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Using a Na,KSb photocathode, ran over 8 hours at
65 mA (2000 C) with a 2.6 day 1/e cathode lifetime.
Reached as high as 75 mA for a short time.

*L. Cultrera, et al., Appl. Phys. Lett., 103, 103504 (2013)
*B. Dunham, et al., Appl. Phys. Lett., 102, 034105 (2013)
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* High average currents with good lifetime from
a photocathode are a reality

 Low emittance (near thermal) beams (with
reasonable bunch charge) from a DC gun/SRF
booster are a reality

« Extremely high DC voltages are not necessary
to achieve our requirements (350 kV okay)

e Space charge simulations + genetic
optimizations match experiments accurately
 Halo/beam loss can be maintained at or below

1 part in 107 to 108
o Cathodes are still the key for any
photoemission gun

Bruce Dunham, Cornell University
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Just in the last year. ..

— Average current of 75 mA from a photoinjector
demonstrated — new record!

— Demonstrated feasibility of high current CW operation (65
mA for >8 hours from a single cathode spot)

— Emittance specification achieved

DC photoemission guns with SRF boosters
provide proven performance for high
average current, high-brightness beams for
moderate bunch charge applications

Bruce Dunham, Cornell University
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e Align DC gun by scanning laser position,
measuring pin-cushion downstream.
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e Align buncher and SRF cavities using correctors, 1o

making sure beam does not move when turned
on/off.

=)

—
%)
[y
N
2]

e Align solenoids by scanning current, using
motors to move/tilt magnets.

Slice emittance is a sensitive tool to verify good machine alignment, as
all misalignments lead to an emittance change.

Bruce Dunham, Cornell University
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| Emittance Measurement AdY -
| Main | rawdata | raw phase space | configuration | all server properties | parar r l ete r Scans an d d IS p | ayS
start (A) stop (A) [+ auto update scan ranges for next scan
scanner 1 -1450— 1315+ Ha - .
= = [w] draw profiles
053] 26415 ' ' I
scanner2| 0.053(7y) 0.264 data path: previous next a.n e Ittan Ce p | Ot.

points per scanner 100 [fnfsterirerpidatazemit/ad_t 12002 Aprilf2012-04 -06_L 7ham193_EDT/ -

start measurement | restore machine ings | load | 9 2D scan '_I start stop points

ready for next measurement -
scan |L0.BEAM}SLOW_ORBIT_FBIA_ | I |
100 % beam intensity 90.0 % beam intensity ) |L0.BEAM SLOW_ORBIT_FE/A | [ |
centroid y = -0.540 mm E= 5270 MeV centroid y = -0.518 mm
centroid y ' = 1.038 mrad Q= 72.6 pC centroid y ' = 1.040 mrad measurement A4 horizontal M|

sigma y = L790 mm 100 x 100 points sigma y = L626 mm -

sigmay ' = 0.111 mrad ROI size: 6.0 filter 3 sigmay ' = 0.103 mrad pause after parameter change (s) 10 W adjust scan range each time

<yy' > =0176 mm mrad # bunches: 15.0 <yy' > =0157 mm mrad _ :

macro-pulse charge = 1089.3 pC macro-pulse charge = 980.1 pC averages per setting 1 _Ishow contour p|°t
alpha = -1.913 alpha = -2.688 : ﬂshw 100% emittance
beta = 34.797 m beta = 45.185 m points per scanner (pre-scan) 50
norm. rms emittance = 1L038 mm mrad norm. rms emittance = 0.660 mm mrad : H
points per scanner (main scan) 60 start sean I [Ioad scan_I print j

Z0T20406T172402-20
MATSLAOT_cmd
MA1SLAOZ_cmd
LO.BEAM/EMIT_MEASURE/A4_Y/ 100% emittance

(Amps)

Single emittance scan GUI

100% emittance

MATSLADZ_emd

1 o L
-38B -3.79 -3.7 -3.65 -36 -3.95 -3.5
MATSLADT_cmd (Amps)

Bruce Dunham, Cornell University
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lon damage Active area is offset
limited to the from the center
central area

Front surface of the

cathode (CsK,Sb on Si)
after use.

Brigic2dDbrhiaeom , (Gomeatdl) bimiveitsity
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i I_I B , | Faraday
U ] Cup
corrector pair slit 1 corrector pair slit 2
“scanner 1” “scanner 2"

Leave the slits stationary and scan
the beam across them. Can
measure charge ranges from 0.1
pC up to 100 pC. Measurements
take ~10 seconds.

Fast scanning magnet pairs

This turns our injector into an
analog computer for performing
multi-parameter optimizations.

By adding a deflection cavity after H &V slits
the slits, we can also do slice
emittance measurements

Bruce Dunham, Cornell University



