Time-Resolving “Laser Wire” for
Large Dynamic Range Measurements at
low beam energy - Design Considerations
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Why

Setup/Tune-up and operation of high current systems (JLab FEL) approach so is:
1. make detailed beam measurements and tuning with very low duty cycle beam
2. monitor some of the beam parameters, not necessarily making detailed
measurements with high power beam

To monitor the transverse match is one the challenges in a linac. At high beam energy if
bends are available and with SR monitors properly placed in the lattice (low dispersion
locations) it can be done. However, at low beam energy in the injector (~10 MeV) SR is
very far-IR.

Thus, it is not trivial to monitoring transverse beam size in an ERL injector

The same is true for longitudinal distribution measuremenst of the beam with sub-ps
resolution at the low beam energy.

“Longitudinal halo” i.e. long temporal tails can be easily converted in to transverse halo
due to strong, time dependent focusing by SRF linac.

One possible solution is to do wire scanner-like measurements, but replacing the physical
wire, which would not survive high current beam, with a laser beam and use Thomson
scattering
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CW-LW: Thomson Scattering

Wavelength conversion assuming: 1 Differential cross section
* beam energy 9 MeV X z  (divergency on the beam
* laser wavelength 1030 um e ~ _— energies ~ 1/y)
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Wavelength conversion assuming:

CW-LW: Collection Efficiency

* beam energy 9 MeV
* laser wavelength 1030 pm

scattered wavelength, nm
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Collecting forward scattered photons in

relatively large solid angle 6=0..5.6 deg,
gives very large collection efficiency of

~ 70 %.
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CW-LW: Signal Level

Wavelength conversion assuming: N, N, 7., U
* beam energy 9 MeV f = fbeam@D s 7 Om[7] - photon rate
- laser wavelength 1030 pym beam
Assuming:
1- pcos(6;) - bunch charge 135 pC
s — o « laser wavelength 1030 um
1- fcos(0y) * pulse energy ~10 pJ
e T, 500 fs

p— * Tpeam 2-D PS
; ¢ fooam 1.169 MHz
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/// We get: No=12, but f,;=14.7 MHz !!!

=t Also, one can take advantage of

— CW time structure of the beam

: wavelength range: 1125 deg and use lock-in amplifier techniques.
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CW-LW: location, geometry

Booster: SRF 5cell x2 DC-350kV photo electron gun ‘
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CW-LW: interaction chamber

laser output port

laser input port

e- beam output e- beam input
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CW-LW: Laser

Laser with parameters far beyond the required ones were demonstrated:

~10 J, 2.34.. MHz, 25 W, 500 fs

Two technologies look particularly attractive;
1. large-mode-area fiber amplifiers 2. thin-disk lasers (oscillators)
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90 W average power 100 u] energy femtosecond
fiber chirped-pulse amplification system
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‘We report on an ytterbium-doped fiber based chirped-pulse amplification system delivering 100 pd pulse en-
ergy at a repetition rate of 900 kHz, corresponding to an average power of 90 W. The emitted pulses are as
short as 500 fs. To the best of our knowledge, this is the highest average power ever reported for high-energy
femtosecond solid-state laser systems. @ 2007 Optical Society of America
OCIS codes: 060.2320, 320.7090.
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Fig. 1. Schematic setup of the high-average-power, high-
energy fiber CPA system. OI, optical isolator; AOM,
acousto-optical modulator.
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Femtosecond thin disk laser oscillator with
pulse energy beyond the 10-microjoule level

S.V.Marchese, C.R.E.Baer, A. G. Enggqvist, S. Hashimoto, D. J. H. C. Maas,
M. Golling, T. Siidmeyer, and U. Keller

Department of Physics, Institute of Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland
“Corresponding author: marchese@phys.ethz.ch

Abstract: We report on a passively mode-locked Yb:YAG thin disk laser
oscillator that generates 11.3-uJ pulses without the use of any additional
external amplification. A repetition rate of 4 MHz is obtained using a
23 4-m-long multiple-pass cavity that extends the resonator length to a total
of 37m. The nearly transform-limited pulses at 45 W of average output
power have a duration of 791 fs with a 1.56-nm-broad spectrum centered at
1030 nm. The laser is operated in a helium atmosphere to eliminate the air
nonlinearity inside the resonator that previously limited the pulse energy.

©2008 Optical Society of America

OCIS codes: (140.3480) Lasers, diode-pumped; (140.3580) Lasers, solid-state; (140.4050)
Mode-locked lasers
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Fig. 3. Schematic of the laser setup with the 23.4-m-long MPC (not to scale). The total cavity
length of 37 m results in a repetition rate of 4 MHz. The 1-mm-thick Brewster plate can be
shifted along the direction of the divergent beam for fine-adjustment of the SPM and pulse
duration. HR: highly reflective mirror, OC: output coupler (10%), DM: dispersive mirror,
SESAM: semiconductor saturable absorber mirror.

.geffer'gon Lab



Laser-Wire Potential

Since it is a “wire scanner” =» counting mode = Large Dynamic Range (LDR)

Utilizing CW time structure of the beam and laser LDR measurements can be made
without counting, by using lock-in detection techniques

Laser pulses much shorter than beam can be used = sub-ps time resolution can be
achieved quite easily

Can be made in dispersive location =» energy resolved measurements
Combining all three above = LDR measurements of longitudinal phase space
Can also be used in non-dispersive location to monitor transverse match

Would works for essentially any high current, but does not rely on high current CW
beam (only ~ 160 uA, as described here)
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