

Longitudinal Beam Halo from Photocathodes*

ERL 2013 | Novosibirsk

Monika Dehn - 09.09.2013

*Supported by BMBF through project

Outline

- Introduction
- Experimental setup
- Time response measurements
- Conclusion and Outlook

Introduction Motivation

- Demand of high current injectors for future accelerator projects (e.g. MESA, BERLinPro) on
 - Beam current of 10-100mA (CW)
 - High quantum efficiency (QE)
 - Long cathode lifetime
 - Low emittance
 - Low unwanted beam
- Fundamental research of emission process of electrons out of photocathodes is necessary
 - Bunch length
 - Energy distribution
 - Longitudinal halo

Introduction Basics

Different types of cathodes for electron sources

[D.H. Dowell, I. Bazarov, B. Dunham, K. Harkay, et.al: Cathode G&D for future light sources; NIM – 2010]

- Time response measurement
 - A TM₁₁₀ deflector cavity transforms the longitudinal beam profile into a transversal beam profile
 - The electron bunches have to be synchronized to the RF to be observed
 - The beam profile is observable as an intensity distribution on a YAG-screen

Experimental Setup Laser

Verdi 10G

- Pump laser
- $\lambda_{\text{laser}} = 532 \text{nm}$
- $P_{\text{out}} \sim 10 \text{W CW}$

Modelocked Ti:Sapphire Laser (MIRA 900)

- Pulsed (~150fs) or CW
- $\lambda_{\text{laser}} = 755 800 \text{nm} \text{ tunable}$
- Repetition rate 76MHz
- $P_{\text{out}} \sim 1.6 \text{W}$ at $\lambda_{\text{laser}} = 800 \text{nm}$ pulsed

HarmoniXX SHG

- Frequency doubler (Second Harmonic Generation)
- $\lambda_{\text{laser}} = 400 \text{nm}$
- $P_{\text{out}} \sim 500 \text{mW}$

PKAT laboratory

There is a possibility to bypass the HarmoniXX SHG to measure at $\lambda_{laser} = 800$ nm.

Experimental Setup PKAT Laboratory (100keV beam facility)

Measurement Calibration of YAG-Screen

[E. Kirsch: Diploma Thesis, will be finished 2014]

Picture of beam spot on YAG-screen

- CW beam and no single shot
- RF and Laser are <u>not synchronized</u>
- $P_{\rm RF} = 45 \mathrm{W}$ and $\lambda_{\rm laser} = 800 \mathrm{nm}$

Position on the screen

•
$$x(t) = A \cdot \sin(\varphi_{RF}) = A \cdot \sin(\omega t)$$

$$\dot{x}(t) = A \cdot \omega \cdot \cos(\omega t)$$

•
$$A \sim \sqrt{P_{\text{RF}}}$$

•
$$\lambda_{\text{laser}} = 800 \text{nm}$$

•
$$P_{RF} = 45W \rightarrow 1mm \triangleq 6,6ps$$

•
$$P_{RF} = 339W \rightarrow 1mm \triangleq 2,4ps$$

Measurement First Results with Bulk-GaAs Photocathodes

- Picture of beam spot on YAG-screen
 - CW beam and no single shot
 - RF and Laser are <u>synchronized</u>
 - $P_{\rm RF} = 339 {
 m W}$ and $\lambda_{\rm Laser} = 800 {
 m nm}$

- First approximation
 - Pulse profiles are gaussians
- Deconvolution of two gaussians
 - $\sigma_{\rm pulse} = 2.29 \rm ps$

[E. Kirsch: Diploma Thesis, will be finished 2014]

Measurement Comparison of Beam Profiles at Different λ_{laser} (I)

Picture of beam spot on YAG-screen

Measurement Comparison of Beam Profiles at Different λ_{laser} (II)

- Results at small beam current and bunch charge
 - $I_{\text{e-beam}}$ < 10nA, bunch charge ~0,1fC
- Same range of transversal σ

Monika Dehn - 09.09.2013

- Exposure time (shutter) of 4ms
 - Corresponds to 3 · 10⁵ bunches

Measurement Comparison of Beam Profiles at Different λ_{laser} (III)

- Longitudinal halo depends on λ_{laser}
 - Higher absorption coefficient for $\lambda_{laser} = 400$ nm
- Assuming an acceptance of $\sigma_{\text{pulse}} = 10 \text{ps}$
 - 10% of intensity is lost ($\lambda_{laser} = 800$ nm)
 - $I_{\text{e-beam}} = 10\text{mA} \Rightarrow 1\text{mA is lost}$

Conclusion

- Cs:GaAs photo cathodes have been analyzed
- Longitudinal halo is observable
- The halo seems to depend on laser wavelength
 - \Rightarrow For $\lambda_{laser} = 400$ nm orders of magnitude lower than for $\lambda_{laser} = 800$ nm

Outlook

- Installation of an alternative method for improved time response measurement for higher dynamic range
- Measurements with K₂CsSb (PCA) photocathodes

Thank You for your attention!