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Abstract

For a typical operating range of hard X-ray FELs the
condition for ratio of the electron beam emittance to ra-
diation wavelength 27we/\ ~ 1 is usually a design goal for
the shortest wavelength. In the case of the simultaneous
lasing the fundamental mode has shorter gain length than
harmonics. If the same electron beam is used to drive an
FEL in a soft X-ray beamline, the regime with 27e/\ < 1
is realized which corresponds to the case of a small value
of diffraction parameter. Here we present a detailed study
of this regime. We discover that in a part of the parameter
space, corresponding to the operating range of soft X-ray
beamlines of X-ray FEL facilities (like SASE3 beamline of
the European XFEL), harmonics can grow faster than the
fundamental wavelength. This feature can be used in some
experiments, but might also be an unwanted phenomenon,
and we discuss possible measures to diminish it.

INTRODUCTION

Once pronounced harmonic of the beam current density
exists in the electron beam, it allows to produce power-
ful coherent radiation. Two mechanisms are usually con-
sidered providing electron beam modulation at higher har-
monics. Bunching at higher harmonics always takes place
when FEL apmplification process driven by the fundamen-
tal frequency reaches saturation regime. This mechanism
is referred to as nonlinear harmonic generation [1-7]. In
the case of planar undulator there always exists also an am-
plification of odd harmonics due to FEL instability. This
mechanism is usually referred as linear harmonic genera-
tion [1,3,8-14]. It is generally accepted that self-consistent
amplification of the radiation at higher harmonics is weaker
than that of the fundamental. This is true in the framework
of one-dimensional approximation (or, in a wide beam
limit) as it has been show in early studies. However, sit-
uation changes qualitatively for diffraction limited electron
beams with small value of diffraction parameter. This pa-
rameter range refers to as thin beam limit [21]. Our studies
have shown that there exists range of parameters when gain
at higher harmonics exceeds the gain at the fundamental.
This range of parameters is not of pure academical inter-
est, but can be experimentally realized for long wavelength
FELS driven by high energy electron beams. Free electron
laser at SASE3 beam line of the European XFEL falls in
this parameter range.

FEL gain length is calculated from solution of an eigen-
value equation. Eigenvalue equation for harmonic lasing
was derived in the framework of one-dimensional (1D)
model in [1, 13], and a thorough 1D analysis can be found
in [14]. An eigenvalue equation for three-dimensional case
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has been derived in [3]. However, this eigenvalue equation
is rather complicated and can be solved only numerically.
One can correctly calculate the gain length for a specific
set of parameters, but it is very difficult to trace general de-
pendencies and perform analysis of the parameter space. In
paper [23] we performed a parametrization of the solution
of the eigenvalue equation for lasing at odd harmonics [3],
and presented explicit expressions for FEL gain length, op-
timal beta-function, and saturation length taking into ac-
count emittance, betatron motion, diffraction of radiation,
energy spread and its growth along the undulator length due
to quantum fluctuations of the undulator radiation. Consid-
ering 3rd harmonic lasing as a practical example, we come
to the conclusion that it is much more robust than usually
thought, and can be widely used at the present level of ac-
celerator and FEL technology. We surprisingly find out that
in many cases the 3D model of harmonic lasing gives more
optimistic results than the 1D model. For instance, one of
the results of our studies is that in a part of the parame-
ter space, corresponding to the operating range of soft X-
ray beamlines of X-ray FEL facilities, harmonics can grow
faster than the fundamental mode.

SIMULTANEOUS LASING IN THE CASE
OF A THIN ELECTRON BEAM

For a typical operating range of hard X-ray FELs the
condition 27e/\ ~ 1 is usually a design goal for the short-
est wavelength. In the case of the simultaneous lasing the
fundamental mode has shorter gain length than harmonics,
as it was shown above in paper [23]. However, if the same
electron beam is supposed to drive an FEL in a soft X-ray
beamline, the regime with 2re/A < 1 can be realized.
Here we present a detailed study of this regime. In this Sec-
tion we assume that beta-function is much longer than FEL
field gain length, 5 > Lgh). Here subscript & denotes har-
monic number. In this case we can use the model of parallel
beam (no betatron oscillations), and can also neglect an in-
fluence of longitudinal velocity spread due to emittance on
FEL process. If in addition the energy spread is negligibly
small, then the normalized FEL growth rate at the funda-
mental frequency is described by the only dimensionless
parameter, namely the diffraction parameter B [21]. The
generalized diffraction parameter B, that can be used for
harmonics, is written as follows [23]:

B = 2¢fTwy/c. (1)

Here wy, = 2mc¢/ Ay, wy, (Ag) is frequency (wavelength) of
the hth harmonic, c is velocity of light, and I' is the gain
factor that also depends on harmonic number:
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The gain length of a harmonic is defined by the universal
function of B:

LM = [T f(B) ! 3)

The function f;(B) can be calculated from the general
eigenvalue equation [23]. However, within the parallel
beam model, accepted in this Section, the eigenvalue equa-
tion can be significantly simplified. We use here the solu-
tion of the equation presented in [21,22] for the Gaussian
transverse distribution of current density (see Fig. 4.52 of
Ref. [21]). In the parameter range, that is the most inter-
esting for our purpose, we can approximate the function
f1(B) as follows:

f1(B) ~ 0.66 — 0.371og,(B) for B<3. 4

Using the superscript (k) to indicate the harmonic num-
ber for the diffraction parameter and the gain factor, we can
see that

B B AT (%) _ h2Agg
BM T '
According to (3) and (2), the ratio of gain lengths can be
presented as follows:
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One can easily observe from (5) and (6) that for a given
value of diffraction parameter for the fundamental fre-
quency, B = B, this ratio depends only on the parame-
ter K for a considered harmonic. If K is sufficiently large
(see Fig. 1), one can obtain a universal dependence which
is presented in Fig. 2 for the case of the third harmonic.
For large values of the diffraction parameter (wide electron
beam limit) one can use an asymptotic expression for the
growth rate [21], so that the function f; is proportional to
(B()~=1/3_1In this case one obtains the result of 1D the-
ory [14]:

(6)
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In the case of the third harmonic and large K this ratio
is equal to 0.87. One can see that the curve in Fig. 2 slowly
approaches this value when B is large. So, in the limit of
wide electron beam, corresponding to 1D model, the funda-
mental frequency has shorter gain length than harmonics.

In the limit of small diffraction parameter (thin electron
beam) we wave the opposite situation, as one can see from
Fig. 2. When diffraction parameter is smaller than 0.4, the
gain length of the fundamental frequency is larger than that
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Figure 1: Coupling factors for the 1st, 3rd, and 5th harmonics
(denoted with 1, 3, and 5, correspondingly) versus rms undulator
parameter.
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Figure 2: Ratio of gain lengths for lasing at the fundamental
wavelength and at the third harmonic versus diffraction parameter
of the fundamental wavelength for large values of the undulator
parameter K.

of the third harmonic for large values of K. A similar de-
pendence can be calculated for the fifth harmonic, in this
case the gain length of the fundamental harmonic is larger
than that of the fifth harmonic (for a sufficiently large K)
when B < 0.28. Moreover, the fifth harmonic grows faster
than the third one when B < 0.15 and K is large. In fact,
if the diffraction parameter for the fundamental harmonic
is about 0.1 or less, there might a number of amplified har-
monics with similar growth rates. We should note that this
number can be reduced when the energy spread is included
into consideration.

To find out how the value of B, at which the harmonics
have the same gain length as the fundamental, depends on
the undulator parameter K, one can use the Eqs. (4)-(6).
We present the results for the third and the fifth harmonics
in Fig. 3. The areas below the curves in Fig. 3 correspond
to the case when corresponding harmonics grow faster than
the fundamental frequency. We should stress that the con-
dition 2me/ X < 1 is necessary but not sufficient for reach-
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Figure 3: Diffraction parameter of the fundamental wavelength,
for which the third (solid) and the fifth (dash) harmonics have
the same gain length as the fundamental, versus the rms undula-
tor parameter K. Below these curves harmonics have shorter gain
lengths than the fundamental frequency.

ing this regime.

Let us discuss why the effect, considered in this Section,
can only take place in the frame of 3D theory and in the
limit of a thin beam. In 1D theory the gain factor (inversely
proportional to the gain length) scales as (A2 ;,wy)'/?, if
we keep only parameters that depend on harmonic number.
The frequency here comes from the dynamical part of the
problem, it reflects the fact that the beam gets bunched eas-
ier at higher frequencies. As for the electrodynamic part of
the problem, the amplitude of the radiation field of charged
planes does not depend on frequency. Since the product
A?, gph decreases with harmonic number for any K, gain
length of harmonics is always larger than that of the fun-
damental frequency. Concerning the 3D theory, the solu-
tion of the paraxial wave equation shows that on-axis field
amplitude is proportional to the frequency. So, both dy-
namical and electrodynamic parts contribute to the solu-
tion of the self-consistent problem with wy,. That is why
in the gain factor in Eq. (2) we have squared frequency
(A%, w?)/2 i.e. it depends on harmonic number via the
product A% ;, h? which can increase with harmonic number
if K is sufficiently large. Since in the case of a thin elec-
tron beam the function f; depends only weakly, in fact log-
arithmically, on the diffraction parameter (which is larger
for harmonics), harmonics can grow faster than the funda-
mental frequency in some range of parameters B and K, as
it is illustrated in Fig. 3.

So far we have discussed an exponential gain regime and
did not consider an initial-value problem. In the simula-
tions one can observe that the fundamental dominates sat-
uration regime even if its gain length is slightly longer than
that of harmonics. First, it has a higher effective start-up
power due to a larger factor Aj;. Second, in nonlinear
regime the longitudinal phase space of the electron beam
is affected stronger by the fundamental frequency. As a re-
sult, saturation power of harmonics in the case B ~ 0.1 is
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weaker!than it would have been in the absence of the fun-
damental frequency (but still much higher than in the case
of nonlinear harmonic generation). The bandwidth at sat-
uration is inversely proportional to harmonic number (con-
trary to the case of nonlinear harmonic generation).

Let us present a numerical example for the European
XFEL. An electron beam with the energy of 10.5 GeV lases
in SASE3 undulator (which is placed behind the hard X-ray
undulator SASE1) with the period 6.8 cm and the rms un-
dulator parameter 7.4 at the fundamental wavelength 4.5
nm. We consider electron bunches with the charge of 100
pC: the peak current is 5 kA, averaged normalized slice
emittance is 0.3 pum from start-to-end simulations [18]. It
is assumed that SASE3 operates in “fresh bunch” mode,
i.e. there is no lasing to saturation in SASE1. Slice energy
spread (due to the quantum diffusion [19] in SASEI and the
active part of SASE3 undulators is added quadratically to
the value obtained in start-to-end similations [18]. For the
beta-function of 15 m we obtain from (1) that the diffrac-
tion parameter for the fundamental wavelength is 0.3, so
that a simplified model, considered in this Section, suggests
that the third harmonic can grow faster than the fundamen-
tal. However, harmonics are more sensitive to the energy
spread than the fundamental frequency, therefore we use a
general eigenvalue equation [23] that includes all the im-
portant effects. We find that the field gain length is 2.44
m for the fundamental harmonic, 2.42 m for the third har-
monic, and 2.52 m for the fifth one. In Fig. 4 we present
the results of numerical simulations. Even though the satu-
ration power of harmonics is lower than it would have been
in the absence of the fundamental, it is still by an order of
magnitude higher than that expected from nonlinear har-
monic generation [20]. The saturation power of the third
(fifth) harmonic is 12% (3%) of the saturation power of the
fundamental frequency. Thus, accurate calculation of har-
monic lasing is necessary for planning of user experiments
and X-ray beam transport.

Note that the method of brilliance improvement, de-
scribed in [23], is especially attractive in the considered
regime. Indeed, one can, in principle, use a high harmonic
number so that the bandwidth reduction can be signifi-
cant. Another useful application is the simultaneous lasing
at the fundamental wavelength and at the third harmonic
with comparable intensities that can be used in jitter-free
pump-probe experiments making use of a split-and-delay
stage [24]. For such an experiment one can, in princi-
ple, manipulate relative intensities with the help of phase
shifters.

On the other hand, a high-intensity harmonic radiation
can disturb some experiments, or may lead to an excessive
power load on mirrors of X-ray transport. In this case the
harmonics can be suppressed by different means. For ex-
ample, one can increase the energy spread with the help of a
laser heater [26-28] which is going to be a part of the stan-
dard design of an X-ray FEL accelerator complex. In the

I'The third harmonic saturates earlier than the fundamental, and at a
full expected power when diffraction parameter is on the order of 0.01.
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Figure 4: An example for the European XFEL. Averaged peak
power for the fundamental harmonic (solid), the third harmonic
(dash), and the fifth harmonic (dot) versus undulator length for
SASE3 operating at 4.5 nm. Parameters are in the text. Simula-
tions were performed with the code FAST.

above presented example, an increase of the energy spread
up to 5 MeV would strongly suppress harmonic lasing, so
that one would get an intensity level expected from non-
linear harmonic generation. Another method is the use of
phase shifters, but now aiming at suppression of harmon-
ics. In this case the phase shifts for the fundamental fre-
quency could be below 1 rad while for harmonics they are
h times larger, i.e. the suppression effect is stronger. Other
options are an increase of the beta-function (what leads to
an increase of the diffraction parameter) or the application
of linear undulator taper [29, 30] that would have stronger
effect on the amplification of harmonics.
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