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Abstract
The novel cooling technique, the coherent electron cool-

ing [1] relies on the amplification of the interaction be-

tween hadrons and electrons by an FEL. The linearity of

the amplification process is essential for operation of such

cooler. In this paper we propose a theoretical method of

taking into account nonlinear effects in computation of evo-

lution of charge perturbation in an FEL. This will allow to

explore the limits of the FEL gain with special attention to

the smearing of the phase caused by nonlinear and satura-

tion effects.

INTRODUCTION
The coherent electron cooling (CeC) is a realization of

the stochastic cooling where an electron beam copropagat-

ing with a hadron beam being cooled serves as a pick-up

and a kicker being amplified by an FEL on its way, the

schematic layout of the device is depicted in Fig. 1. Pick-

up or modulator stores the information about the hadron

beam as a perturbation of a charge density in the electron

beam, then this perturbation is amplified by an FEL, and

then goes to the kicker where its field accelerates slow mov-

ing hadrons and decelerates the fast ones. The detailed the-

oretical investigation of all these steps is required to build

a working device. Now the modulator section is described

in an infinite beam approximation in [2] and the study for

the finite realistic beam is started in [3]. In the CeC an FEL

is used in a nonstandard way, i.e. as an amplifier of the

electron density perturbation. This facet of the FEL theory

is not developed enough and we fill this gap in this article.

With the methods presented we plan to analyze possible

limitations of the FEL gain in the CeC device by nonlinear

effects and saturation. In the next two sections we discuss

1D model for a modulator and the simplest possible initial

conditions, i.e. electron density perturbation coming from

the modulator. We considered 1D model and cos-like con-

dition. The rest of the paper is devoted to possible ways to

compute an evolution of these perturbations in an FEL.

Figure 1: The scheme of the coherent electron cooler.
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1D MODULATOR
In 1D case the problem of a shielding of a hadron moving

along the trajectory y (t) = x0+ tv0 in an electron beam is

described by the following Maxwell-Vlasov system:

∂f1
∂t

+ v
∂f1
∂x

=
e

m0γ

∂U

∂x
· ∂f0
∂v

, (1)

∂2U (x, t)

∂x2
= − e

ε0
(n1 (x, t)− Zδ (x− y (t))) , (2)

the Maxwell equation can be solved via Fourier transform:

k2Ũ (k, t) =
e

ε0

(
ñ1 (x, t)− Z

∫
δ (x− y (t)) e−ikxdx

)
.

(3)

Using this solution the equation (1) can be transformed to

Ñ1 (k, s) = − e

ε0

∞∫
0

e−tst

∫
f0 (v) e

−ikvtdvdt×

×
⎛
⎝Ñ1 (k, s)− Z

∞∫
0

e−iky(t)−tsdt

⎞
⎠ , (4)

where Ñ1 (k, s) is a Laplace-Fourier image of n1 (x, t) ≡∫
f1dv. Assuming the cold electron beam we have

Ñ1 (k, s) = Zρ
e−ikx0

(s+ ikv0)
(
(s+ ikvc)

2
+ eρ

ε0

) . (5)

The inverse Laplace and Fourier transforms of this expres-

sion can be computed by Mathematica analytically, the ex-

pression is pretty bulky. It appears to be complex. Looking

back to initial equations and assuming complex f1 we see

that equation with Imf1 corresponds to equation without

external charge, while equation with Ref1 is the equation

with it. So as a solution we take

n1 (x, t) = ReF−1L−1{ Zρe−ikx0

(s+ ikv0)
(
(s+ ikvc)

2
+ eρ

ε0

)}.
(6)

INITIAL CONDITIONS
We change variables in (6) to the ones widely used in

FEL theory [4], namely we take z ≡ x as a new indepen-

dent variable and θ = kwz + ω
(
z
c − r

)
and get:

n1 (θ, z) = Re

∫ γ+i∞∫
γ−i∞

−iZρe−ikx0+ikz+( z
c− θ−kwz

ω )s

(s+ ikv0)
(
(s+ ikvc)

2
+ eρ

ε0

)dkds,
(7)
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and

n1 (ν, z) =

=
Zρ

2π
Re

∫
e−ikx0+ikz−iω

ν z( 1
c+

kw
ω )(

ω
ν − kv0

) (
eρ
ε0

− (
kvc − ω

ν

)2)dk, (8)

so

F (1) (ν, 0) =
Zρ

2π
Re

∫
e−ikx0(

ω
ν − kv0

) (
eρ
ε0

− (
kvc − ω

ν

)2)dk.
(9)

We also consider function of the form cos (ω0t+ ϕ),
changing variables to θ, z and setting z = 0 we have the

following initial condition:

F̃ (1) (θ, η, 0) = F
(1)
0 cos (αθ + ϕ) , α > 0 (10)

F (1) (ν, 0) = πF
(1)
0

(
e−iϕδ (ν − α) + eiϕδ (ν + α)

)
.

(11)

LINEAR CASE
Generally a 1D FEL is described by the following non-

linear system of Maxwell-Vlasov equations [4](
∂

∂z
− iΔνku

)
A (ν, z) = (12)

= −K [JJ ] jZ0

4γ0ω1

√
2π

∫ ∫
eiνθF̃ (θ, η, z) dθdη, (13)(

∂

∂z
+ 2kuη

∂

∂θ

)
F̃ (θ, η, z) +

eK [JJ ]

2γ2
0mc2

√
2π

×

×
∫

A (ν, z) e−iνθdν
∂

∂η
F̃ (θ, η, z) = 0. (14)

The Vlasov equation can be solved via method of the orbits

with the orbit θ(0) (z1) = θ+2kuη (z1 − z), sometimes we

use notation φ ≡ 2kuη, for the general nonlinear case we

have:

F̃ (θ, η, z) = F̃
(
θ(0) (0) , η, 0

)
− eK [JJ ]

2γ2
0mc2

√
2π

×

×
z∫

0

∫
A (ν, z1) e

−iνθ(0)(z1)dν
∂

∂η
F̃
(
θ(0) (z1) , η, z1

)
dz1,

(15)

linear approximation of this equation can be obtained by

setting F̃ (θ, η, z) = F̃ (0) (η) = n0δ (η − η0) in the in-

tegral. Solutions of the linearized system we will denote

F̃ (1) (θ, η, z) and A(1) (ν, z). Plugging the solution for the

linearized case into the Maxwell equation we have:(
∂

∂z
− iΔνku

)
A(1) (ν, z) = −K [JJ ] jZ0

4γ0ω1

√
2π

×

×
∫ ∫

eiνθF̃ (1)
(
θ(0) (0) , η, 0

)
dθdη+

+2πρ31

z∫
0

∫
A(1) (ν, z1) e

−iν2kuη(z1−z) ∂

∂η
F̃ (0) (η) dηdz1,

(16)

where ρ1 =
(
eK2 [JJ ]2 jZ0/

(
8γ3

0mc2ω12π
)) 1

3 , the first

term in the right hand side is a contribution of initial pertur-

bation. This equation can be solved via Laplace transform

giving for the Laplace image

Ā(1) (ν, s) =
−A(1) (ν, 0) + d1

∫ F (1)(ν,η,0)
s+2iνkuη

dη

−s+ iΔνku − 2πρ31
4iπνkun0

(s+2iνkuη0)
2

, (17)

where F (1) (ν, η, 0) is known initial perturbation and d1 =
K [JJ ] jZ0/ (4γ0ω1). Plugging this expression into the
solution of the Vlasov equation and doing some integra-
tions we get

F̃
(1)

(θ, η, z) = F̃
(1)

(
θ
(0)

(0) , 0
)
δ (η − η1)−

n0ρ
3
1

d1

∂

∂η
δ (η − η0)×

×
3∑

j=1

∫
1

ν
2
3

(
−A(1) (ν, 0) +

d1F (1)(ν,0)
sj+2iνkuη1

)
e−iνθ

(
e
sjz−e2iηkuνz

)
sj−2iηkuν dν

(2π)−1/2 ∏3
k=1, j �=k

(
sj/ν

1
3 − sk/ν

1
3

) ,

(18)

where sj are the poles of the expression (17), for sim-
plicity we take Δν = 0 and η0 = 0, in this case∏3

k=1, j �=k

(
sj/ν

1
3 − sk/ν

1
3

)
doesn’t depend on ν. This

expression has to be integrated over energies η, this is
straightforward because of the delta-functions, integration
over ν has to be computed numerically for the initial con-
dition (9) and can be done analytically for (11):

F̃
(1)

(θ, η, z) = F̃
(1)
0 cos

(
αθ

(0)
(0) + φ

)
δ (η − η1)−

− πn0

√
2πρ

3
1

3∑
j=1

∑
ν=±α

1

ν
2
3

e−sign(ν)iϕ

sj+2iνkuη1

e−iνθ
(
e
sjz−e2iηkuνz

)
sj−2iηkuν

∏3
k=1, j �=k

(
sj/ν

1
3 − sk/ν

1
3

) ×

× F
(1)
0

∂

∂η
δ (η − η0) , (19)

where A(1) (ν, 0) is assumed to be zero and η1 is energy

of initial mono-energetic perturbation. The electron den-

sity perturbation of the second order can be obtained in the

similar way, plugging first order perturbation into the ex-

pression (15), but this leads to an equation which is not

solvable by Laplace transform, at least without significant

simplifications.

NONLINEAR CASE VIA
EIGENFUNCTION EXPANSION

To treat the non-linear case we employ the Van-

Kampen method of expansion over the eigenfunctions. The

Maxwell equation and the Fourier transformed to ν-space

Vlasov equation in the first order can be written in the ma-

trix form: (
∂

∂z
− iM

)
Φ = 0, (20)

where

Φ =

(
A (ν, z)

F (ν, η, z)

)
, M =

⎛
⎝ Δνku i

K[JJ]jZ0
4γ0ω1

∫
dη

i
eK[JJ]

2γ2
0mc2

∂
∂ηF (0) (η) −2kuην

⎞
⎠ ,

(21)
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Introducing dot product

[Φ1,Φ2] = a1 (ν) a2 (ν) +

∫
f1 (ν) f2 (ν) dη, (22)

and defining adjoint functions and operator via[
M†Φ†1,Φ2

]
=

[
Φ†1,MΦ2

]
we have for them

Φ† =
(
A (ν, z) , F (ν, η, z)

)
, (23)

M† =

(
Δνk i eK[JJ]

2γ2
0mc2

∫
dη ∂

∂ηF
(0) (η)

iK[JJ]jZ0

4γ0ω1
−2kuην

)
(24)

Looking for the solution in this form:

Φ(1) ≡
(

A(1) (ν, z)

F (1) (ν, η, z)

)
= e−iμ

(1)
n z

(
A(1)

n

F(1)
n (η)

)
≡ e−iμ

(1)
n zΨn.

(25)

we have

F (1)
n (η) = −eK [JJ ]

2γ2
0mc2

(
∂

∂η
F (0) (η)

)
A(1)

n

i

μ
(1)
n − 2kuην

,

(26)

with condition Im
(
2νkuη − μ

(1)
n

)
< 0. Lets look at the

Maxwell equation:

(
−iμ(1)

n − iΔνku

)
A(1)

n = −K [JJ ] jZ0

4γ0ω1

∫
F (1)

n (η) dη,

(27)

plugging the density we have

(
−iμ(1)

n − iΔνku

)
A(1)

n = 2πρ31

∫ (
∂

∂η
F (0) (η)

)
×

×A(1)
n

0∫
−∞

ei(2νkuη−μ(1)
n )τdτdη, (28)

For the KV equilibrium distribution this equation reduces

to:

μ(1)
n +Δνku = 4πkuνρ

3
1n0

1(
μ
(1)
n − 2kuη0ν

)2 , (29)

which is the same as the equation for the poles of (17).

Similarly we can solve adjoint equation
(
μ† +M†)Ψ†n =

0. We have μ† = μ, A(1)
n

†
= A(1)

n and

F† (η) = −i
K [JJ ] jZ0

4γ0ω1

A(1)
n

μ
(1)
n − 2kuην

(30)

If we have non-trivial initial conditions the solution is the

following:

Φ (ν, z) =
∑
n

e−iμ(1)
n z

[
Ψ†n,Φ (0)

][
Ψ†n,Ψn

] Ψn ≡
∑
n

c(1)n (ν, z)Ψn,

(31)

where

[
Ψ†n,Φ (0)

]
= A(0) (ν)A(1)

n +

∫
F (0) (ν, η, 0)F (1)

n (η) dη,

(32)[
Ψ†n,Ψn

]
= A(1)

n

2
+

∫
F (1)

n (η)
†F (1)

n (η) dη = (33)

= A(1)
n +

8πiρ31n0kuνA(1)
n(

μ
(1)
n − 2kuη0ν

)3 (34)

The initial distributions we consider doesn’t depend on η,

so for them

[
Ψ†n,Φ (0)

]
= A(0) (ν)A(1)

n − 2iku
n0νA(1)

n F (0) (ν, 0)(
μ
(1)
n − 2η0kuν

)2 .

(35)

This method doesn’t give an equation for A(1)
n , it can be

considered as a parameter or can be found from previous
method. For the 3D case this method also works and gives

an integral equation for the A(1)
n (�x⊥), where �x⊥ is a trans-

verse coordinate.
For the second order plugging the solution of the Vlasov
equation into the Maxwell one we have:

(
∂

∂z
− iΔνku

)
A(2) (ν, z) = ρ31

∫ ∫
eiνθ

z∫
0

∫
A(2) (ν2, z2)×

× e−iν2θ
(0)(z2)dν2

∂

∂η
F̃ (1)

(
θ(0) (z2) , η, z2

)
dz2dθdη. (36)

And we have for the density:

F̃ (1)
(
θ(0) (z2) , η, z2

)
=

=
∑
n

∫
c(1)n (ν1, z2)F (1)

n (η) e−iν1θ
(0)(z2)dν1. (37)

Here we also look for solution in such form:

Φ(2) =

(
A(2) (ν, z)

F (2) (ν, η, z)

)
≡ e−iμ(2)

n z

(
A(2)

n

F (2)
n (η)

)
, (38)

plugging it and integrating over θ we have

(
−iμ(2)

n − iΔνku

)
A(2) (ν, z) = 2πρ31×

×
∫ z∫

0

∫
A(2) (ν2, z2) iν2 (z2 − z) e−iν2φ0(z2−z)×

×
∑
m

c(1)m (ν1, z2)F (1)
m (η) e−iν1φ0(z2−z)×

× δ (ν − ν1 − ν2) dν2dz2dν1dφ, (39)
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We assume that A(2) (ν, z) is governed by a single fre-

quency ν, this leads to ν1 = 0 and we have(
−iμ(2)

n − iΔνku

)
e−iμ(2)

n zA(2)
n = −2πρ31×

×
∫ z∫

0

e−iμ(2)
n z2A(2)

n iν (z2 − z) e−iνφ(z2−z)×

×
∑
m

c(1)m (0, z2)F (1)
m, ν=0 (η) dz2dφ, (40)

then we plug coefficients and eigenfunctions:

(
μ(2)
n +Δνku

)
e−iμ(2)

n z = −2πρ31
eK [JJ ]

2γ2
0mc2

2ku×

×
∫ z∫

0

e−iμ(2)
n z2iν (z − z2) e

iν2kuη(z−z2)×

×
∑
m

e−iμ
(1)
m, ν=0z2

[
Ψ†m,Φ (0)

][
Ψ†m,Ψm

]
∣∣∣∣∣∣
ν=0

(
∂

∂η
F (0) (η)

)
×

× A(1)
m

μ
(1)
m

dz2dη. (41)

As we see from (32) and (35) for ν = 0 the dot products

gives A(0) (0), which is often assumed to be zero. Plugging

this, doing Laplace transform, and integrating over φ we

get:

μ
(2)
n +Δνku

iμ
(2)
n + s

= 2in0νπρ
3
1

eK [JJ ]

2γ2
0mc2

2ku (−4kuν)×

×
∑
m

(2kuη0ν + is)
−3

i
(
μ
(2)
n + μ

(1)
m, ν=0

)
+ s

A(0) (0)
A(1)

m

μ
(1)
m

, (42)

and setting s = 0:

μ
(2)
n +Δνku

iμ
(2)
n

=
eK [JJ ]

γ2
0mc2η30kuν

∑
m

−n0πρ
3
1A

(0) (0)

μ
(2)
n + μ

(1)
m, ν=0

A(1)
m

μ
(1)
m

,

(43)

We can further simplify the expression assuming zero de-

tuning Δν = 0. For A(0) (0) = 0 we have pure oscillatory

solution μ
(2)
n = −Δνku. However we cannot set η0 = 0

to use simple solution for first order case, when we have

μ
(1)
m, ν=0 = 0, because we have η0 in denominator. To use

this simplification we can start from (41), integrating it over

φ we have

μ(2)
n = −2πρ31

eK [JJ ]

2γ2
0mc2

(2kuν)
2
A(0) (0)×

×
z∫

0

∑
m

eiμ
(2)
n (z−z2) (z − z2)

2
eiν2kuη0(z−z2)

A(1)
m

μ
(1)
m

dz2,

(44)

where we set Δν = 0, then we change integration variable

to τ = z − z2 and extend lower integration limit to −∞,

assuming that filed amplitudes grow exponentially [6]:

μ(2)
n = C

∑
m

A(1)
m

μ
(1)
m

0∫
−∞

ei(μ
(2)
n +ν2kuη0)τ τ2dτ, (45)

where Im
(
μ
(2)
n + ν2kuη0

)
< 0 and C is a coefficient in

front of the integral in (44), then we integrate

μ(2)
n = C

2i(
μ
(2)
n + ν2kuη0

)3

∑
m

A(1)
m

μ
(1)
m

, (46)

then we set η0 = 0:

μ(2)
n =

(
−i8πρ31eK [JJ ] k2uν

2A(0) (0)

γ2
0mc2

∑
m

A(1)
m

μ
(1)
m

) 1
4

.

(47)

The relation between this solution and equation (42) and

reasonable choice of s in (42) needs further analysis. An-

other possibility to deal with (41) is to set z equal to undu-

lator length, which seems physically reasonable.

SUMMARY
In this article we studied the evolution of the initial den-

sity perturbation in an FEL, namely, we derived explicit

formulas for the first order contribution and developed the

method to compute the second order corrections. Follow-

ing the similar procedure it is possible to compute the cor-

rections of all orders. We plan to use this to compute the

saturation effects in coherent electron cooler and estimate

the maximum possible amplification. The method can be

extended to the 3D case, as it was considered in [6], giv-

ing an integral equation for the field amplitude as a func-

tion of transverse radial coordinate. The difference from

the method from [6] is that they made a certain assumption

about higher order μn’s, while we derived an equation for

them.
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