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Abstract
FEL configurations in which the parameters of the elec-

tron beam vary along the undulator become relevant when
considering new aspects of existing FELs or when explor-
ing novel concepts. This paper describes a fully three-
dimensional, analytical method suitable for studying such
systems. As an example, we consider a seeded FEL driven
by a beam with varying transverse sizes. In the context of
the Vlasov-Maxwell formalism, a self-consistent equation
governing the evolution of the radiation field amplitude is
derived. An approximate solution to this equation is then
obtained by employing an orthogonal expansion technique.
This approach yields accurate estimates for both the ampli-
fied power and the radiation beam size. Specific numerical
results are presented for two different sets of X-ray FEL
parameters.

INTRODUCTION
The standard approach for analyzing the physics of a

high-gain FEL in the linear regime is based on formulating
and solving the eigenmode problem for the system [1–4].
However, this method is only valid when the electron beam
parameters do not depend on the longitudinal position z. In
some important cases, this assumption is not satisfied [5].
In this paper, we develop an analytical technique that is ap-
plicable even when such a z-dependence is present and use
it to study an FEL that is driven by a mismatched or an
unfocused beam. For full details, we refer to [6].

THEORY
To begin with, let us assume that the FEL radiation is

generated as a relativistic, bunched electron beam passes
through a planar, parabolic-pole-face undulator with sym-
metric focusing. From Ref. [7], the 3-D single particle
equations of motion are

dx

dz
= p ,

dp

dz
= −k2

βx , (1)

dθ

dz
= 2kuη −

kr
2

[p2 + k2
βx2] , (2)

dη

dz
= κ1

∫ ∞
0

dνEν(x, z)e−i∆νkuzeiνθ + c.c. , (3)

where x is the transverse position, kβ is the total focus-
ing strength of the undulator system, θ = (ku + kr)z −
ωrt + [krK

2/(8kuγ
2
0)] sin(2kuz) is the electron phase,

λu = 2π/ku is the undulator period, λr = λu(1 +
K2/2)/(2γ2

0) = 2π/kr = 2πc/ωr is the resonant wave-
length, γ0 is the average Lorentz factor, K is the undulator
parameter, η = (γ − γ0)/γ0 is the relative energy devi-
ation, ν = ω/ωr is the scaled frequency, ∆ν = ν − 1,

Eν is the complex amplitude of the radiation field, κ1 =
eKJJ/(4γ2

0m0c
2) (e and m0 are the electron charge and

mass, JJ = J0[K2/(4 + 2K2)]−J1[K2/(4 + 2K2)]) and
c.c. stands for complex conjugate. Up to the onset of sat-
uration effects, the operation of the FEL is accurately de-
scribed by the following set of coupled, frequency-domain,
linearized Vlasov-Maxwell equations:

∂fν
∂z

+p
∂fν
∂x
−k2

βx
∂fν
∂p

+ iθ′fν = −κ1Eνe
−i∆νkuz ∂f0

∂η
,

(4)(
∂

∂z
+
∇2
⊥

2ikr

)
Eν(x, z) = −κ2e

i∆νkuz

×
∫
d2p

∫
dηfν(η,x,p, z) , (5)

where fν =
∫
dθf1e

−iνθ/(2π) is the amplitude of the
perturbation f1 to the distribution function of the elec-
tron beam, f0 is the background distribution, κ2 =
eKJJ/(2ε0γ0) and θ′ = dθ/dz is given by Eq. (2). More-
over, the unperturbed distribution f0 - which we take to
be θ-independent - evolves according to the zeroth-order
Vlasov equation

∂f0

∂z
+ p

∂f0

∂x
− k2

βx
∂f0

∂p
= 0 (6)

and its normalization is given by
∫
d2p

∫
d2x

∫
dηf0 =

Nb/lb, where lb and Nb are, respectively, the length of one
bunch and the number of electrons it contains. We note that
this analysis dose not include space charge or shot noise
effects.

Equation for the amplitude of the radiation field
The general solution of Eq. (4) is

fν = fν(z = 0) exp

(
−idθ
dz
z

)
(7)

− κ1
∂f0

∂η

∫ z

0

dζEν(x̄, ζ)e−i∆νkuζ exp

(
i
dθ

dz
ξ

)
dζ ,

where ξ = ζ − z and x̄ = x cos(kβξ) + (p/kβ) sin(kβξ).
One can also show that Eq. (6) admits solutions of the form
f0 = f0(η,x cos z̄ − (p/kβ) sin z̄,xkβ sin z̄ + p cos z̄),
where z̄ = kβz0, z0 = z − ze and ze is a constant. We
choose a background distribution given by

f0 =
Nb

(2π)
5/2
lbσ2σ′2ση

exp

(
− η2

2σ2
η

)
×

exp

(
kβΓ sin(2kβz0)

2σ′2
xp −

k2
β [1 + Γcos2(kβz0)]

2σ′2
x2

−1 + Γsin2(kβz0)

2σ′2
p2

)
, (8)
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where Γ = σ′
2
/(σ2k2

β)−1 is the mismatch parameter. The
above expression corresponds to a mismatched beam with
a round, Gaussian profile. The oscillating electron beam
size is σe(z) = σ[1 + Γsin2(kβz0)]1/2. In this paper, we
will only consider the case in which the electron beam is
initially unmodulated, so fν(z = 0) = 0. Substituting
Eq. (7) into Eq. (5), performing the integration over η and
changing the momentum integration variable from p to x̄,
we obtain an integro-differential equation for the radiation
field amplitude Eν :

∂Eν
∂z

+
∇2
⊥Eν

2ikr
=

∫
d2x̄

∫ z

0

dζΛ(x, x̄, z, ζ)Eν(x̄, ζ) ,

(9)
where

Λ(x, x̄, z, ζ) = −4iρ3k3
u

πσ′2
ξe−i∆νkuξ−2σ2

ηk
2
uξ

2

× (10)

exp

(
−
k2
β [1 + ikrσ

′2ξ + Γsin2(kβζ0)]

2σ′2sin2(kβξ)
x2

−
k2
β [1 + ikrσ

′2ξ + Γsin2(kβz0)]

2σ′2sin2(kβξ)
x̄2 +

k2
β

σ′2
×

(1 + ikrσ
′2ξ) cos(kβξ) + Γ sin(kβz0) sin(kβζ0)

sin2(kβξ)
xx̄

)

with ζ0 = ζ−ze - we recall that z0 = z−ze and ξ = ζ−z -
and

ρ =

(
K2JJ2

16γ3
0 k

2
uσ

2

I

IA

)1/3

(11)

is the Pierce parameter [7], expressed in terms of the
peak current I = eNbc/lb and the Alfven current IA =
4πε0m0c

3/e ≈ 17 kA.

Expansion method
Our goal is to obtain a solution to Eq. (9) that is consis-

tent with a specified initial amplitude Eν(x, z = 0). The
method we adopt is based on expanding the field ampli-
tude in terms of a complete set of orthogonal basis func-
tions. The basis we employ consists of generalized Gauss-
Laguerre transverse modes

ψnm(x, z) =

(
n!

(n+ |m|)!

)1/2
(√

2r

w

)|m|
× L|m|n

(
2r2

w2

)
ψ00(x, z)eimφe−i(2n+|m|)u , (12)

where (r, φ) are polar coordinates in the transverse plane,
(n,m) are integers with n ≥ 0 and L|m|n are the associated
Laguerre polynomials. Here,

ψ00(x, z) =

(
krβ1

π

)1/2
1

z − iβ
exp

(
ikrr

2

2(z − iβ)

)
(13)

is the fundamental basis mode - defined through a complex-
valued function β = β1 + iβ2 = β(z) - while w =

(2/(krβ1))
1/2 |z − iβ| and u = tan−1 ((z + β2)/β1) are,

respectively, the spot size and Gouy phase associated with
it. The basis elements described above satisfy the orthonor-
mality condition 〈ψnm | ψpq〉 ≡

∫
ψ∗nmψpqd

2x = δnpδmq
and reduce to the standard vacuum modes of paraxial op-
tics when β is a constant. For simplicity, we assume that the
external seed consists of a finite number of vacuum Gauss-
Laguerre modes with the same azimuthal index m and -
constant - basis parameter βs. In view of the axial symme-
try of the problem, we seek a solution with an eimφ angular
dependence. The expansion for the field amplitude is then

Eν(x, z) = εν

∞∑
n=0

Cnm(z)ψnm(x, z) , (14)

where Cnm are chosen to be dimensionless and εν is a con-
stant. Inserting Eq. (14) into Eq. (9) yields an infinite set of
coupled evolution equations for the expansion coefficients:

dCnm
dz

= (2n+ |m|+ 1)
iCnm
2β1

dβ2

dz

+
√
n(n+ |m|)Cn−1,m

2β1

dβ

dz

−
√

(n+ 1)(n+ |m|+ 1)
Cn+1,m

2β1

dβ∗

dz

+

∫ z

0

dζ

∞∑
p=0

Cpm(ζ)Λnmpm (z, ζ, β, βζ) (15)

where

Λnmpm (z, ζ, β, βζ) = (−1)p+n+1

× 8iρ3k3
u

D

(p+ n+ |m|)!
(n!p!)

1/2
[(p+ |m|)!(n+ |m|)!]1/2

×
(
β1ζ

β1

) |m|+1
2 (z − iβ)

n+|m|

(ζ − iβζ)p+|m|
(ζ + iβ∗ζ )

p

(z + iβ∗)
n

× ξe−i∆νkuξ−2σ2
ηk

2
uξ

2 (X − Y )
p
(X − 1)

n

Xp+n+|m|
dpb|m|

ap+|m|

× 2F1 (−p,−n;−p− n− |m| ; J) . (16)

In the relations given above, 2F1 is a Gaussian hypergeo-
metric function, βζ ≡ β(ζ) and β1ζ ≡ β1(ζ) = Re[βζ ].
Moreover,

a = 1 + Γsin2(kβz0) + ikrσ
′2
(
ξ − sin2(kβξ)

k2
β(ζ − iβζ)

)
,

(17)

d = a− 2krσ
′2β1ζsin

2(kβξ)

k2
β |ζ − iβζ |

2 , (18)

b = (1 + ikrσ
′2ξ) cos(kβξ) + Γ sin(kβz0) sin(kβζ0) ,

(19)

Y =
β1ζ

β1

|z − iβ|2

|ζ − iβζ |2
b2

ad
. (20)
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Defining

D1 = −ikrσ′
2
sin2(kβξ)/k

2
β (21)

+ [1 + Γsin2(kβz0) + ikrσ
′2ξ](ζ − iβζ) ,

D2 = krσ
′2ξ − i[1 + Γsin2(kβζ0)] (22)

+ k2
β(

1

krσ′
2 + iξ)(1 + Γ + ikrσ

′2ξ)(ζ − iβζ) ,

we also have D = (iD1 + (z + iβ∗)D2)/(2β1), D3 =
D1/(z− iβ), X = D/D3 and J = 1−Y/((X −Y )(X −
1)). For a monochromatic input signal, the amplified power
and radiation beam size are given by

P (z) = P0

∞∑
n=0

|Cnm(z)|2 =

∫
I(x, z)d2x (23)

and

σ2
r(z) =

∫
r2I(x, z)d2x

2
∫
I(x, z)d2x

=

(
w2

4

)
× (24)

1
∞∑
n=0
|Cnm(z)|2

{ ∞∑
n=0

(2n+ |m|+ 1)|Cnm(z)|2−

2 Re[e2iu
∞∑
n=1

√
n(n+ |m|)Cn−1,m(z)C∗nm(z)]

}
,

where P0 is the input power and I ∝ |Eν |2 is the
intensity of the radiation. We note that we have set
εν = (

∫
d2x|Eν(x, 0)|2)1/2 so that

∑∞
n=0 |Cnm(0)|2 = 1.

From the above, it is evident that numerically solving an
appropriately truncated version of the set of Eq. (15) can
lead to valuable quantitative information about the FEL ra-
diation. To proceed, we need to specify the basis func-
tion β(z). By choosing β(z = 0) = βs, we ensure that
Cnm(0) = 0 for all n > M , where M is the maximum
radial index of the seed modes. Thus, it is reasonable to ap-
proximate the field amplitude using the first M + 1 modes
in the expansion of Eq. (14) (0 ≤ n ≤ M ). To improve
the accuracy of our calculation, we follow a self-consistent
approach in which the basis function evolves in correlation
with the expansion coefficients [8]. If we select β so that√

(M + 1)(M + |m|+ 1)
CMm

2β1

dβ

dz

+

∫ z

0

dζ

M∑
p=0

Cpm(ζ)ΛM+1,m
pm (z, ζ, β, βζ) = 0 , (25)

it can be shown that the coefficient of the next order mode
(ψM+1,m) vanishes identically. Eq. (25), along with a trun-
cation of Eq. (15), define our approximation scheme.

NUMERICAL RESULTS
To illustrate our method, we have used two different FEL

parameter sets, both of which correspond to hard X-ray
machines (Table 1). Set 1 roughly describes the current

Table 1: Undulator and electron beam parameters

Parameter Set 1 Set 2

Undulator parameter K 3.7 0.5
Undulator period λu 3 cm 0.5 cm
beam energy γ0mc

2 14.31 GeV 2.21 GeV
Resonant wavelength λr 1.5 A◦ 1.5 A◦

Peak current I 3 kA 3 kA
Energy spread ση 10−4 10−4

Normalized emittance γ0ε 0.5 µm 0.5 µm
Matched beta βm = 1/kβ 30 m 13.78 m
Matched beam size σm 23.14 µm 39.89 µm
ρm (for σ = σm) 5.4× 10−4 2.3× 10−4

External focusing Yes No

operating parameters of the LCLS while Set 2 refers to a
machine with lower beam energy and more ambitious un-
dulator specifications. For Set 1, we consider two configu-
rations: one with a matched electron beam (Γ = 0) and
one for which the beam is underfocused, with ze = 0,
σ/σm =

√
2.5 and Γ = σ4

m/σ
4 − 1 = −0.84. In both

cases, we assume a Gaussian seed with the following pa-
rameters: input beta β(z = 0)/βm = 0.38 + i0.21, detune
ν̂m = ∆ν/(2ρm) = −0.38 and input power P0 = 2 kW.
In Figs. 1-3, we show the comparison between the re-
sults obtained with our technique and GENESIS simula-
tion data. In the linear regime, the theoretical results are in
good agreement with simulation, even though only a sin-
gle Gaussian mode has been used in obtaining the former.
Including higher order modes in our calculation makes the
comparison with simulation even more favorable. In the
case of the matched beam, our analytical solution almost
exactly reproduces the variational value for the fundamen-
tal FEL growth rate in the exponential-gain region. For Set
2, we explore two distinct cases: we either assume a con-
ventional undulator that relies solely on natural focusing
or consider a device with the same K and λu but with no
focusing. The second option can refer to an RF undula-
tor, where the transverse defocusing effect is typically very
weak. The case with no focusing can be treated by the for-
malism we have developed by taking the limit kβ −→ 0.
The resulting analytical expressions refer to an FEL that is
driven by a coasting beam with a single waist at z = ze. We
choose the waist beta function βe ≡ σ/σ′ to be equal to the
natural value of 13.78 m, which is fairly close to the opti-
mum beta for these parameters. We then use our method
to study the influence of the waist position upon the total
FEL gain for an undulator length Lu = 2.5βe = 34.45 m
and compare the results with the total gain for the case
of a beam that is matched to the conventional undulator.
For all these runs, we have assumed a Gaussian seed with
β(z = 0)/βm = 0.92 + i0.91 and ν̂m = −0.94. The
data obtained - again using a single mode approximation -
are shown in Fig. 4. From the latter, we conclude that one
can recover as much as 93% of the gain for the matched
beam when ze = 1.25βe = 0.5Lu, i.e. by placing the
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Figure 1: FEL gain G(z) = log[P (z)/P0] for a matched
(blue curves) and a mismatched beam (red curves) - LCLS
parameters. Both analytical results (solid curves) and sim-
ulation data (dashed curves) are shown.
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Figure 2: Normalized growth rate for a matched and a mis-
matched beam (same legend as in Fig. 1). The black line
refers to the growth rate of the fundamental FEL mode.

waist of the unfocused beam in the middle of the undulator
segment.

CONCLUSION

An expansion method has been developed for solving
the initial value problem of an FEL with variable electron
beam parameters, taking full account of 3-D effects. We
have used this technique in the study of various aspects of
the operation of a high gain FEL that is driven by a beam
with varying transverse sizes. The results obtained are in
good agreement both with simulation and with the theo-
retical prediction for the special case of a matched elec-
tron beam. The ability to describe the radiation field with a
small number of expansion modes makes this method po-
tentially useful for parameter studies in the linear regime.
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Figure 3: Scaled radiation beam size for a matched and a
mismatched electron beam (same legend as in Fig. 1).
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Figure 4: Total gain vs scaled waist position (blue mark-
ers) for an FEL driven by an unfocused beam (Set 2 pa-
rameters). Also shown is the gain for a matched beam (red
dashed line).
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