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Abstract 
We present an analytical theory for small-signal 

operation of a Smith–Purcell free-electron laser with a 
finitely thick electron beam travelling close to the surface 
of a grating. The dispersion equation is derived from a 
self-consistent set of small-signal equations describing the 
dynamics of beam-wave interaction. By solving the 
dispersion equation carefully, we reveal that the growth 
rate of the field amplitude holds a finite value at the 
Bragg point, which is different from previous theoretical 
predictions. 

INTRODUCTION 
It is believed that a compact, tunable, and coherent 

radiation source in the THz domain could be developed 
using the principles of Smith–Purcell free-electron lasers 
(SP-FEL)[1-5]. The principle of the beam-wave 
interaction above an open grating was established in Refs. 
[1-3], where the authors assumed a uniform electron beam 
filling the entire space above a lamellar grating and 
derived the dispersion relation for the evanescent wave on 
the surface of the grating. The authors pointed out that the 
device operates as a backward-wave oscillator (BWO) 
when the interaction with an electron beam occurs on the 
downward slope of the dispersion relation and as a 
travelling-wave tube (TWT) when the interaction occurs 
on the upward slope [2,3]. From their theory, they 
predicted that the spatial growth rate would be 
proportional to 3131 

gvI , where I  is the beam current 

and dkdv g   is the group velocity of the surface 

wave, and that the growth rate diverges at the Bragg 
point, where the group velocity vanishes. In evaluating 
the start current of the SP-FEL, all the authors followed 
the methods that have been used for analyzing BWOs. 
Almost the same boundary conditions were used in Refs. 
[2-4] to establish the equations determining the start 
current for SP-FEL. One condition, namely, the field 

vanishes at the downstream end of the grating, is used.  
However, we know that it is possible for the surface 

wave to interact with the electron beam even at the Bragg 
point, so the prediction that the growth rate diverges at the 

Bragg point cannot be true. Also, the behavior that occurs 
at the ends of a grating, which will be addressed later, and 
the effect of this behavior in determining start current 
implies that the condition of a vanishing electromagnetic 
field at the downstream end is less reasonable. Therefore, 
it is necessary to reexamine the theoretical analysis.  

DISPERSION 
In the Cartesian coordinate system, the electrons 

initially move in the z direction with velocity 0v  in the 

vacuum above a lamellar grating along the 
trajectories dsxs  , and are coupled with the TM 
mode of an electromagnetic wave. The grating is ruled 
parallel to the y direction, and it has a period length L , 
groove width A , and groove depth H . The grating is 
assumed to be a perfect conductor, which means that the 
losses from the surface current can be ignored. The 
component of magnetic-flux density above the grating 

yB  can be expanded in the form                 







p

zjk
py

pexBB )( ,                       (1) 

Where, Lpkk p 2 , and p  is an integer. The 

wave equation is obtained below: 
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Following the methods using in Ref.[2,3], it is 
straightforward to get the dispersion equation 

Where, 
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Figure 1: Dispersion relation of the surface wave. 

Figure 2: Spatial growth rate. 
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In the absence of an electron beam, p  vanishes and the 

dispersion equation is simplified as 

1
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.            (4) 

The grating parameters used in this paper are set to be 
L=173μm, A=62μm, H=100μm, and the period number of 
73. Using these parameters, the dispersion relation is 
obtained by numerically solving Eq. (4), and the result is 
shown in Fig. 1, which shows that the operating point 

( 00 ,k ) of the laser is where beam line k  intersects 

the dispersion curve. It also shows that for electrons with 
energy of 90 keV, the intersection occurs on the 
downward slope. We carried 44  p  in the 

expansion of Eq. (4), which showed good convergence. 
We know that a surface mode consists of the 

superposition of an infinite number (  ..p ) of 

spatial harmonics, and that those with positive pk carry 

energy flow forward, while those with negative 
pk  carry 

energy flow backward. From the dispersion equation, we 
can calculate the average power carried by each harmonic 
with the average power  

         



0 ,, *

2

1
pypxp HEdxS ,     

SPATIAL GROWTH RATE 
Usually, Eq. (3) can be simplified as discussed below. 

We know that only the zeroth space harmonic can 
synchronize with the electron beam; thus, it is reasonable 
to only consider 

0 p  near the operating point (
00 , k ). 

Also, if the beam density is small enough, 
0 p

 can be 

expanded in powers of small magnitude 
2

0
3
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 , 

where 22
pb   . Then, Eq. (3) can be simplified to be 
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where 







p p

ppgg

LA
SSd




 ,2,10,0, )tan(

, 0

0,20,10,0, )tan(



LA

SSdgg









1

)(
0

!

)0(

n

n
p

n

n
, 

22
0

3

2

kv
b




 , 0kkk  , 

and )0()(
0

n
p   is the nth derivative of 

0 p  at 0. Note 

that the beam density should satisfy the conditions 

1 b  and 1)( 22
0

32 kvb   in the 

simplifying process. 
Next, we can expand   at the operating point 

(
00 , k ). If we take the first order of expanded powers, 

Eq. (3) can be written as 
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where ),(' 00 k  is the derivative k  at ( 00 , k ). 
From the above equations, obtaining the spatial growth 
rate is straightforward: 
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Eq. (6) shows that the growth rate diverges at the Bragg 
point where ),(' 00 k  vanishes. However, this is not 

due to the actual physics that occurred there but is instead 
due to the rough mathematical calculation. If we take into 
account more terms of expansion, the growth rate would 
have a finite value at any point on the dispersion curve. 
We try to attain better precision with fewer terms of 
expanded powers. In this paper, we expand   and  up 

to the second order; thus, Eq. (5) should be rewritten as 
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This equation can be numerically solved to obtain k , 
and )Im( k would be the spatial growth rate . Eq.(7) has 
six solutions. One of them that has the maximum 
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Figure 3: Temporal growth rate and start current. 

imaginary part indicates the mainly growing mode, and 
the other solutions can be neglected.  

We assume that the electron beam fills a region of 
width d=24μm. Beam height above the grating and the 
beam energy are assumed to be s=30μm and Eb=90 keV, 
respectively. In these calculations, the beam current is 
fixed to I 1 mA, and we have the relation 

2
000

2 cdmIeb   , where 0m  is the electron mass, 

d  is the thickness and width of the electron beam. The 
results are shown in Fig. 2, where the spatial growth rate 
is a function of beam energy. As is shown in Fig. 2, 
according to the previous theory, the growth rate diverges 
when the electron beam energy reaches 124 keV, i.e., the 
Bragg point; in contrast, our theory gives a finite value.  

START CURRENT AND TEMPORAL 
GROWTH RATE 

In our theory, the mechanism of beam-wave interaction 
should occur like this: the zeroth order space harmonic 
interacts with the electron beam moving in the z direction 
and the whole harmonics are amplified during the 
interaction; at the downstream end, the 0p  harmonics 

go out the grating (where they are partially reflected and 
partially diffracted; however, we ignore these reflections 
in the present theory), while the 0p  harmonics are 

retained. Note that they are retained but not reflected, 
because 0p  harmonics intrinsically move in the –z 

direction; energy carried by 0p  harmonics are 

reapportioned among the whole harmonics to satisfy the 
boundary condition on the surface of a grating; in 
addition, at the upstream end, 0p  harmonics are 

retained, and they start the second round trip. Because the 
zeroth and –1st order harmonics hold most of the energy of 
the surface wave and because they are faster than the 
other space harmonics, it is reasonable to consider only 
these two harmonics in the following analysis. 

We define the total power flow of the whole space 

harmonics as 





p

ptotal SS . The ratio of a given 

harmonic to the total power flow is written 
as totalpp SS . Thus, the condition for device to 

start oscillating should be 101
2   e ,                                     

where   is the total length of a grating. From the no-
beam dispersion equation, we can calculate 

p  at 

operating point ),( 00 k ; thus the required spatial 

growth rate for starting oscillation can be acquired. Then, 
we can work out the start current with the help of Eq. (7).  
  In a round trip, the fields are amplified only when the 
zeroth order harmonic moves forward with the electron 
beam; therefore, the gain of the field can be written as a 

function of time et
t

e
))ln(

2

1
( 10  

, where et is the 

effective time. In addition, we know that the energy is 

brought back to the upstream end mainly by the –1st order 

harmonic, so the relation between effective time et  and 

real time t  can be easily worked out as 
01

01

vv
vv

t e 






 . 

Here, pv  is phase velocity for a p th order harmonic and 

also the energy velocity of the harmonic. Finally, we get 
the temporal growth rate as 
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.             (8) 

Using the parameters mentioned above, we calculated the 
temporal growth rates as function of beam current, and 
the result is given in Fig. 3, where the start current is also 
shown.  

 

CONCLUSION 
In conclusion, by carefully processing the dispersion 

equation, we find that the growth rate does not diverge 
near the Bragg point, which is more reasonable than the 
previous theory. We develop a simple method to evaluate 
the start current based on the power flow of space 
harmonics, and also provide a way to convert spatial 
growth rate to temporal growth rate. 
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