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Abstract 
In this paper, we study the nonlinear evolution of a helical 

quadrupole wiggler FEL, in Raman regime and in the 

presence of space-charge field. By using Maxwell’s 

equations and nonwiggler averaged equation of motion of 

electron beam, a set of nonlinear first-order differential 

equations describing the evolution of the helical 

quadrupole FEL is derived in the slowly varying 

amplitude and wave number approximation and solved 

numerically by the Runge–Kutta method. The beam is 

cold and propagates with a relativistic velocity. The 

amplitude of wiggler field increases adiabatically from 
zero to a constant level. To focus the electron beam, we 

apply an axial magnetic field. Finally, the results of 

helical quadrupole wiggler are compared to an equivalent 

dipole wiggler.  

INTRODUCTION 

There are two principle directions for FEL development 
activities. One is to generate high coherent X-ray pulses, 

and the other is to generate high average power at infrared 

wavelength. A FEL which works at millimeter 

wavelengths has many applications such as 

telecommunication and measurement of solid state 

materials and semi conductor’s properties.  

In order to generate a quadrupole wiggler magnetic 

field, one can use a helical winding of four wires, with a 

current flow in in two wires in one direction, and in the 

oder two wires in the opposite direction. First works on 

quadrupole wiggler FEL were done by Levush et al. [1]. 
They proposed this kind of wiggler and showed that it can 

represent a new concept to obtain high power, coherent 

radiation in millimeter and sub millimeter regime. They 
examined the near axis orbit properties of a quadrupole 

wiggler without an axial guide field but including the 

effects of space charge and showed that it had improved 

beam stability when compared to a dipole wiggler. The 

effect of an axial guide field on the nonlinear stage of the 

dipole wiggler FEL interaction studied by Freund [2] 

Antonsen et al. [6] examined the nonlinear theory of a 

quadrupole free-electron laser when the betatron 

frequency is close to the mismatch frequency and found 

that it can reduced the three-dimensional equations to an 

integrable one-dimensional equation. CHANG et al. 
examined the characteristics of a Compton regime 

quadrupole magnetic wiggler for a FEL amplifier 

neglecting space charge effects. They showed that 

Optimum efficiencies for the quadrupole case occur for 

lower beam voltages, larger guide radii, and shorter total 

wiggler lengths than for a comparable dipole case [7].   

The purpose of this study is to consider a FEL with a 

helical quadrupole wiggler in Raman regime at millimeter 

wavelengths.  

This code is based on the equations in which the space-

charge effect is presented and then, there are some 

additional terms in the equations to show this effect. This 

is an improvement of CHANG et al. Formulation in 

which this effect is neglected [7]. In fact, we modified 
Freund et al. formulation [2], to examine the evolution of 

radiation amplitude for a helical quadrupole wiggler and 

finally we compare its results with an equivalent helical 

dipole case. 

FIELDS STRUCTURE AND POTENTIAL 

EQUATIONS 

The idealized, one dimensional helical quadrupole 

wiggler magnetic field may be described as [7] 
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Where wB  refers to the wiggler amplitude which 

presents an adiabatic injection of the electron beam and 

wwk  /2 is the wiggler wave number. 

 

Figure 1: Quadrupole wiggler configuration  

In addition to the wiggler filed, an axial magnetic field 

is used to focus the beam, 

zeB00 B                                                                     (3)  

The vector and scalar potentials of radiation and space 

charge may be in the form of [2], [5] 
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Where )(zk  is the wave number of radiation and )(zk is 

the wave number of the space charge wave. 

ELECTRON ORBIT DYNAMICS 

In order to derive the dynamics of electrons, the 

relativistic equation of motion is used, [2] 
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E and B are electric and magnetic field due to A and 

  which may obtain from Maxwell equations as follow: 
AB                                                                       (9) 
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Substituting Eq. (4) and Eq. (5) into Eq. (9) and Eq. (10), 

yields  
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Using dimensionless variables xkx w , yky w , 
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to z according to the relation
zd

d
td

d  , the three 

components of Eq. (8) will be as: 
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Differential equations which describe the evolution of 

 and   are 
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Are the differential equations governing the transverse 

electrons motion where  
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WAVES DYNAMICS 

To complete the formulation, the equations which 

describe the evolution of waves should be considered. By 

selecting Coulomb gauge, Maxwell equations can be 

written as  
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Where J is nonlinear current density which may be 

written as an average over entry time 0t [4],  
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And   is the nonlinear charge density which is given by 

Eq. (22) when zv is removed. By substitution Eq. (23) in 

Maxwell Eq. (20), a set of first order coupled nonlinear 

differential equations are derived for a , k and  , 

where  is the growth rate of radiation. These equations 

are as follow: [5] 
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Eq. (21) and Eq. (22) yield  
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Here, the average operator is defined over the initial 

ponderomotive phase 00 t  as 
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Where ponderomotive phase is zwk  . 

NUMERICAL PROCEDURE 

Equation (13)-(19) together with equation (24)-(29) 

constitute a set of 7N+6 nonlinear and self consistent first 

order differential equations which governing the 

interaction evolution of the waves and electrons’ motion 

and maybe solved numerically by the first order Runge- 

Kutta method where N is the number of electrons. It is the 

initial phase that appears in the averaging operator and 

discretizes the electrons. The integrations over the beam 

cross section are done with Simpson’s method to 

discretizes electrons. The initial condition for phase 

distribution of electrons is  200  .The common 

parameters, which are used, correspond to a situation in 

which 6.2/0   , 05.0/  w , the relativistic factor 

5.3 , and an entry taper of 10wN  wiggler periods. 

Wave numbers of the vector and scalar potential are 
chosen to satisfy the dispersion relation for a circularly 

polarized electromagnetic wave [5], 
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In the presence of axial magnetic field and the dispersion 

relation for the negative energy space-charge wave  
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Since the steady-state amplifier model is considered, 

the initial amplitude of the vector potential can be 

selected arbitrarily to represent the amplitude of the 

injected signal which is selected to be
710)0( za  

and the initial value of the growth rate (logarithmic 

derivative), is chosen to be zero at the entrance to the 
wiggler, as mentioned in [2]. However, the scalar 

potential must be found from Eq. (28). 

In Fig. 2, the evolution of radiation amplitude is plotted 

along wiggler length. With the specific values we 

considered for this problem, saturation takes place around 

2.21z and saturation amplitude is 0107.0a in this 

case. 
In continue, the evolution of radiation amplitude is 

compared for dipole and quadrupole wigglers. In Fig. 3, 

radiation amplitude is plotted for dipole wiggler (dashed 

line) and quadrupole wiggler (solid line) for normalized 

frequency 1.12 corresponding to .3mm It is seen 

that saturation takes place at 05.48z with 

00349.0sata for dipole wiggler and 8.35z with 

00282.0sata for quadrupole wiggler. For this case, 

using dipole wiggler is more effective to increase 

saturation amplitude. 

 

 

Figure 2: Evolution of the radiation amplitude vs. axial 

position for a quadrupole wiggler for 6.2/0   , 5.3

05.0/  w . 

In Fig.4, the evolution of radiation amplitude along z  

direction is plotted for normalized frequency 9.6 for 

dipole (dashed line) and quadrupole (solid line) wigglers.  

 

 

 

Figure 3: Evolution of the radiation amplitude vs. axial 

position for a quadrupole wiggler (solid line), and dipole 

wiggler (dashed line) for 6.2/0   , 05.0/  w  , 5.3 .

1.12  
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In this case, the saturation point is at 1.42z for dipole 

wiggler where 0058.0sata , and for quadrupole 

wiggler, saturation takes place at 2.21z correspond to

0107.0sata . As it is seen, quadrupole wiggler is 

more effective to increase saturation amplitude in this 

case. 

But according to the results of two different 

frequencies, quadrupole wiggler has reduced saturation 

length in both cases. 

 

 

Figure 4: Evolution of the radiation amplitude vs. axial 

position for a quadrupole wiggler (solid line), and dipole 

wiggler (dashed line) for 6.2/0   , 05.0/  w  , 5.3 9.6  

CONCLUSION 

A new nonlinear configuration to describe the evolution 

of radiation amplitude for a helical quadrupole wiggler 

FEL in the presence of space-charge effect is investigated 

at millimeter wavelengths. The results showed that by 
applying a quadrupole wiggler, the saturation length may 

be decreased. It is also found out that this kind of wiggler 

is suitable for longer wave lengths in comparing with 

dipole wiggler and may extremely increase the saturation 

amplitude. Three dimensional formulation and shorter 

wavelengths will be considered in future studies.  
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