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Abstract 
For the preparation of PAL-XFEL, Injector Test 

Facility (ITF) has been constructed and required beamline 
components are being installed for the test of the injector 
system. ITF components include an RF gun, two 
accelerating columns, solenoids and basic diagnostic 
components such as spectrometers, quad scan system, 
BPMs, a wire scanner. Passing through the two 
accelerating columns an electron beam is accelerated up 
to 139 MeV with a charge of 200 pC and an emittance 
under 0.5 μm. For optimization of operation modes and 
precise diagnostics simulation for ITF beamline has been 
carried out with the ASTRA code. In this paper 
simulation results and discussion related to emittance 
measurements will be shown. 

INTRODUCTION 
ITF consists of an S-band 1.6-cell photocathode RF 

gun, two S-band accelerating columns, solenoids and 
diagnostic components. In particular, quadrupoles will be 
installed downstream of the 2nd accelerating column for 
quad scan. And also a laser heater system and an RF 
deflector for longitudinal phase space measurement will 
be installed next year. Assembling all components except 
the laser heater system and the deflector will be ready by 
the end of August. Beam commissioning will be started 
soon and the generation of a beam with an emittance 
under 0.5 μm is the first plan for this year. A schematic 
layout of the ITF beamline is shown in Fig. 1. 

 
Diagnostics for ITF 

Diagnostics for ITF will be conducted mainly in two 
energy regions, i.e. the Low Energy (LE) region with an 
energy of 6 MeV and the High Energy (HE) region with 
an energy of 139 MeV. Detailed diagnostic components 
are as follows: 
 LE dipole & HE dipole for energy measurement. 
 ICTs & Faraday cup. 
 BPMs & phase monitors. 
 quadrupoles for quad scan. 
 wire scanner. 
 RF deflector. 

 
Quad scans will be carried out by one HE quadrupole 

and two LE quadrupoles. The LE quadrupoles, HE 
quadrupole and screen are located at 9.15 m, 9.55 m, 
13.22 m and 15.86 m from the cathode respectively. Two 
LE quadrupoles are not mainly installed for quad scan and 

the locations of them are not optimized for quad scan. 
Thus additional quadrupoles will be installed upstream of 
the existing HE quadrupole if necessary. Detailed 
specification of the quadrupoles are listed in Table 1. 

 

Table 1: Specification of the Quadrupoles for Quad Scan 

Component effective length 
Max. quadrupole 

strength 

LE quadrupole 8 cm 7.21 /m2 

HE quadrupole 14.7 cm 27.97 /m2 

 

QUAD SCAN 
Quadrupole scan is mostly used for emittance 

measurement of a beam with high energy. It is non beam 
destructive way to measure and can be affected by the 
nonlinear field of the quadrupole thus the quadrupoles 
should be properly arranged, say, they should have 
enough drift space longer than their focal length. 

Let’s consider a beam transfer matrix as follows: 
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This matrix is generally a product of various matrices 
describing drifts, quadrupoles, etc. In our case each 
element is the function of focal length, that is, the strength 
and effective length of quadrupole and distance between 
components of beam optics we consider and also we 
already know. For 2nd moments of a certain position of 
the beamline there exist beamsize which corresponds to 
certain focal length and distance. Therefore if someone 
measure at least three different beamsize corresponding to 
different beam optic functions 2nd moments in phase 
space can be calculated by numerical method. This can be 
expressed as follows [1],[2]: 
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Here subscript stands for number of cases with 
different beam optics, that is, the number of combinations 
of quadrupoles with different strength or position. 
Calculation will be more accurate for more measurement 
conducted. From calculated 2nd beam moments 
normalized transverse beam emittance can be evaluated 
by a formula as: 
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Figure 3: Simulation result with single quadrupole. 
Beamsize (top left) and phase advance (bottom left) at the 
position of the screen with different quadrupole strength. 
quadrupole strength values are -4/m2 to 4/m2 with 0.25/m2 
step from left to right. Beamsize after eliminating 
overlapped cases (top right) and its phase advance 
(bottom right). 
 

Current Quadrupole Setup 
Simulation with the current quadrupole setup has been 

carried out and the results are shown in Fig. 4. Plots on 
the left show results before elimination overlapped cases 
and plots on the right show results after elimination. 
Calculated emittance values are 0.745 μm and 0.244 μm 
respectively. After elimination emittance gets more 
accurate but there is still larger difference with simulation 
value 0.282 μm. Elimination condition was same as single 
quadrupole setup case. Quadrupole strength values are -
3.0/m2 to 3.0/m2 with 1.0/m2 scan step for all three 
quadrupoles, Q1, Q2 and Q3. 

 

 
Figure 4: Simulation result with current quadrupole setup. 
Beamsize (Top) and phase advance (Bottom) at the 
position of the screen with different quadrupole strength. 
The quadrupole strength values are -3/m2 to 3/m2 with 
1/m2 step from left to right. Beamsize after eliminating 

overlapped cases (top right) and its phase advance 
(bottom right). Interesting thing is that emittance 
calculation can be more accurate and it depends on 
elimination condition. If cases with phase advance less 
than 20 degrees and larger than 160 degrees are 
eliminated during matrix calculation evaluated emittance 
is 0.275 μm and it becomes much more accurate. 
 

CONCLUSION 
Transverse emittance in the horizontal direction has 

been calculated with beamsize values from ASTRA 
simulation. Relatively accurate results were evaluated 
even though not many cases were used for numerical 
calculation.  But it is verified again how to generate 
proper phase advance is main key according to this 
simulation. Smaller scan steps are also need to increase 
accuracy of emittance calculation. And calculations with 
a variety of error sources are needed for real measument. 
It is considered to use MAD to find proper optics to 
generate phase advance range we want. This study is still 
in progress. 
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