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Abstract 

Photo injector laser systems for linac based Free 
Electron Lasers (FELs) sometimes have the capability of 
generating pulse trains with an adjustable length. For 
example, the currently installed laser at the Photo Injector 
Test Facility at DESY, Zeuthen Site (PITZ) can generate 
pulse trains containing up to 800 pulses. Repetition 
frequencies are 10 Hz for the pulse trains and 1 MHz for 
the pulses within a train, respectively [1]. 

Mostly due to thermal effects caused by absorption in 
amplifier and frequency doubling crystals, pulse 
properties are changing slightly within a pulse train and 
also shot-to-shot, depending on the pulse train length. To 
increase stability and repeatability it is desirable to run the 
laser under constant conditions. To achieve this while still 
being able to freely choose pulse patterns a pulse picker 
can be installed at the laser output to sort out unwanted 
pulses. A promising candidate for this functionality is an 
acousto-optic modulator which currently is being tested at 
PITZ. First experimental results will be presented and 
discussed towards the possibility of including this device 
into an FEL photo injector. 

INTRODUCTION 
A central issue for running high quality experiments 

with a FEL is the stability of its output, requiring every 
subsystem including the photocathode laser to meet set 
specifications. In the case of an FEL with a multi-bunch 
structure, e.g. FLASH and the European XFEL, where 
each output event is a pulse train of varying length, the 
stability criterion has to be met not only shot-to-shot but 
also within each laser pulse train. 

One critical part of the photocathode laser system is the 
frequency quadrupling where the laser output wavelength 
is converted from the near infrared (1030 nm) via green 
(515 nm) into the ultraviolet (UV at 258 nm). This is done 
in two steps with nonlinear crystals, each doubling the 
laser wavelength. The second conversion step from green 
into UV is done with a beta barium borate (BBO) crystal 
which absorbs a tiny fraction of the converted UV light. 
The resulting temperature variation in the crystal leads to 
small but measurable variations of e.g. charge and delay 
of pulses within a pulse train [2]. Absorption of light in 

the other conversion crystal and amplifier crystals of the 
laser adds to this effect. 

A possible solution to this problem is to let the laser run 
constantly to stabilize the temperature of the crystals and 
define the pulse trains by picking the appropriate pulses 
behind the laser. Such a pulse picker may be realized 
using a UV Pockels cell or an acousto-optic modulator 
(AOM). This improves the situation because of the 
difference in the physical processes: the wavelength 
conversion in the BBO crystal is a nonlinear process 
requiring high light intensity. Small variations in 
operating conditions have big effects on arrival time and 
conversion efficiency. The AOM on the other hand is 
based on the linear acousto-optic effect, making it 
possible to operate the pulse picker at low intensity, 
which should, together with the low UV absorption of the 
AOM material (quartz), reduce the influence of heating 
enormously. 

In order to prove the anticipated advantages 
experimentally such an AOM is currently being tested at 
the Photo Injector Test Facility at DESY, Zeuthen Site 
(PITZ) and in the following we will first explain the 
function of this device and then present initial 
experimental results. 

THE ACOUSTO-OPTIC MODULATOR 
The function of an AOM is based on the acousto-optic 

effect which is an interaction of light with a sound wave 
[3]. An AOM is a device which utilizes this effect to 
deflect a light beam as illustrated in Fig. 1. 

 

Figure 1: Function of an AOM. 
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