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Abstract 
The multi-foil cone radiator to generate high field short 

terahertz pulses with the short electron bunches is 
described. A round flat conducting foil plates with 
successively decreasing radius are stacked, comprising a 
truncated cone with axis z. The gaps between foils are 
equal and filled by some dielectric (it may be vacuum). A 
short relativistic electron bunch propagates along the z 
axis. At high enough particle energy the energy losses and 
multiple scattering do not change the bunch shape 
significantly. Then, passing through each gap between 
foils, the bunch emits some energy into the gap. After that 
the radiation pulses propagate radially. For the TEM-like 
waves with longitudinal (along the z axis) electric and 
azimuthal magnetic field there is no dispersion in these 
radial lines, therefore the radiation pulses conserve their 
shapes (time dependence). At the cone outer surface we 
have synchronous circular radiators. Their radiation field 
forms the conical wave. The cone angle may be 
optimized; moreover, the nonlinear dependence of the foil 
plates radii on their longitudinal coordinate z may be used 
for the wave front shape control. 

INTRODUCTION 
The high field short terahertz pulses may be interesting 

for different applications [1, 2]. The multi-foil cone 
radiator to generate them using the short electron bunches 

is described in this proposal. The scheme under 
consideration is shown in Fig. 1. A round flat conducting 
foil plates with successively decreasing radius are 
stacked, comprising a truncated cone with axis z. The 
gaps between foils are equal and filled by some dielectric 
(it may be vacuum). A short relativistic electron bunch 
propagates along the z axis from left to right. At high 
enough particle energy the energy losses and multiple 
scattering do not change the bunch shape significantly. 
Then, passing through each gap between foils, the bunch 
emits some energy into the gap. After that the radiation 
pulses propagates radially, as it is shown in Fig. 1a. For 
the TEM-like waves with longitudinal (along the z axis) 
electric and azimuthal magnetic field there is no 
dispersion in these radial lines, therefore the radiation 
pulses almost conserve their shape (time dependence). At 
the cone outer surface we have synchronized circular 
radiators. Their radiation field forms the conical wave 
(see Fig. 1b). 

THE SINGLE GAP EXCITATION 
Let us find the radiation field in one gap. We are 

interested only in TEM waves, having only the 
longitudinal electric Ez and the azimuthal magnetic Hα 
fields, which do not depend on z. The Maxwell equations 
for such waves are 

z

a

z

b

Figure 1: Short electron bunch passes through the conical foil stack. a – after the bunch passed a gap, the wave 
propagates radially. b – as the pulses reaches the foil boundaries, they are combined to a conical wave. 
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where gdzjj
g

g zav 
2/

2/
 is the beam current density, 

averaged over the gap length g, n is the refraction index, 
and round beam is assumed. The solution for the electric 
field Fourier transform outside the beam is 
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is the form factor, k = nω/c, the Hankel function H0
(1)(kr) 

= J0(kr) + iY0(kr) is the combination of Bessel and 
Neumann functions. Here and below we suppose the 
bunch velocity to be equal to the light velocity c. The 
form factor modulus is less than one, and at zero 
frequency it is one. For the Gaussian charge distribution  
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where 122222 ganlleff  . The corresponding 

time dependence at kr >> 1 is 
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where Ieff/Q is the inverse Fourier transform of the form 

factor Fω. For 12222 ganl   Ieff is the beam 

current. 
According to Eq. (2) the radiation spectral density is 
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Then the total radiated energy is  





0

2

2

2

 dF
c

Q
gW .   (8) 

For the Gaussian bunch it gives 
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The corresponding effective average decelerating field is  
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For Q = 0.5 nC and leff = 0.1 mm it is about 2 MV/cm. 
Then for the cone height L = 2 cm the radiated energy is 2 
mJ. To have the transverse size smaller, than the bunch 
length, the beam emittance has to be less than leff

2/L = 
5·10-7 m. 

The radiated energy may be compared with the radiated 
energy of the coherent transition radiation (for a narrow 
beam, a << l) 
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where rmax depends on geometry and electron energy. The 
ratio of these energies  
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can be large. 

For 12222 ganl   the radiation field of the 

Gaussian bunch is  
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the field time dependence in the units of the electron 
bunch r. m. s. duration, is shown in Fig. 2 together with 
the Gaussian bunch shape.  

Figure 2: The function    
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line) and Gaussian exponent exp(-x2/2) (dashed line). 

 
The maximum field is 
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and the corresponding peak power is 
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For our example it is 0.4 GW. 

THE REFRACTION AT THE CONE 
BOUNDARY 

Let us consider the wave refraction at the cone 
boundary; the cone angle is α (see Fig. 3).  

z

r

 
Figure 3: The refraction geometry. 

 
Let the gaps are much smaller than the pulse length. In 
this case the foils form the anisotropic media with the 
diagonal permittivity tensor ε = diag(i∞,i∞,n2), and the 
radiation may be considered as the Cherenkov radiation in 
it. Then inside the cone there are the waves 

 ticziikr  exp . The tangent components of the 

wave vectors of this wave and the wave in the free space 
have to coincide at the boundary 
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is the angle between the wave vector of radiation in free 
space and the z axis. The necessary condition for radiation 

  n12tan   follows from Eq. (16). 
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can be found from the boundary conditions  
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for incident (E+ and H+), reflected (E- and H-) and 
transmitted (E and H) waves. 
There is no reflection for  
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For n = 1   2721atan0  , and R < 0.1 for 10° < α < 

60°. It allows using different angles and not only cones, 
but other revolution surfaces to control the wave front 
shape. 

THE WAVE ATTENUATION 
It needs also to take into account the attenuation due to 

the finite surface impedance ζ. According to the 
Leontovich boundary condition the radial electric field at 
the foil surface is ζHα. Then the Poynting vector 
amplitude is c|Hα|

2Reζ/(4π), and the length of the e-time 
power attenuation is 
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The known normal-incidence absorption coefficients 
4Reζ in the THz range are typically less than one percent, 
but for small gaps the attenuation may be significant. 
Therefore it needs to choose the cone angle to be less than 
the value for zero reflection, given by Eq. (19). 

THE MULTIPLE SCATTERING 
The multiple scattering of electrons on the atomic 

nuclei of foils (here we suppose the absence of matter 
between foils) increases the angle spread of electrons [3]: 
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where X0 is the radiation length of the foil cone material, 
E is the particle energy.  
The corresponding growth of the beam transverse size a is 
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where a0 is the size without multiple scattering. 
According to Eq. (5) the transverse size has to be less 
than the bunch length. Therefore  
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It may be expressed as the limitation for the electron 
energy 
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The radiation length of graphite is about 0.2 m. Stacking 
the foils with thickness 10 micron and period 0.2 mm, one 
obtain the radiation length 4 m. Then for our example the 
minimum energy is 110 MeV. To decrease the minimum 
energy one can decrease the cone height (and radiated 
power). For example, for L = 1 cm it is 40 MeV and the 
radiated power is about 0.2 GW. 

For high peak currents the focusing by the beam 
azimuthal magnetic field may reduce the beam size 
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growth, given by Eq. (22). It makes the energy limitation 
Eq. (24) easier.  

The small holes in the foils can eliminate the multiple 
scattering. In this case one has to substitute the hole 

radius divided by 2  instead of the r. m. s. transverse 
beam size a to the effective bunch length leff.  

THE ON-AXIS FIELD 
The on-axis field can be found from Eq. (1) also. It is  
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For Gaussian beam and low ( 112222  gan ) 

frequencies  
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The real part of this impedance gives the same loss as Eq. 
(7). The imaginary part is almost inductive. This 
impedance may cause an additional bunching of the 
beam. Then a higher peak power may be achieved. 
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