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GENESIS 1.3 [7]. Figure 2 shows the results of the FEL 
peak power versus the radiator length to show the 
exponential growth followed by saturation at 10.89 m in 
the radiators. The final outputs of FEL properties such as 
the spectrum and temporal profile are illustrated in Fig. 3. 
The bandwidth and pulse duration are 0.03 nm (FWHM) 
and 5 �m (17 fs, FWHM) respectively.  
 

Table 1: Electron Beam, Seed Laser, and Undulator 
Parameters Taken for the 20 nm Cascade Case 
Electron beam 
Beam energy [MeV] 

 
400 

Relative energy spread 2*10-4 
Emmitance [� mm mrad] 1.5 
Charge [nC] 1 
Bunch length [ps (RMS)] 1 
Peak current [kA] 0.4 
Seed laser  
Wavelength [nm] 40 
Peak power [kW] 10 
Pulse duration [fs (FWHM)] 20 
Undulator (modulator) 
Periodic length of magnets [mm] 
Number of magnets in 1 segment 
Number of segments 
Deflection parameter 
Resonant wavelength [nm] 
Peak magnetic field [T] 

 
15 
200 
1 
2.134 
40 
1.53 

Undulator (radiator) 
Periodic length of magnets [mm] 
Number of magnets in 1 segment 
Number of segments 
Deflection parameter 
Resonant wavelength [nm] 
Peak magnetic field [T] 

 
15 
200 
3 
1.067 
20 
0.76 

    

Figure 2: FEL peak power evolution calculated by 
GENESIS in the 20 nm cascaded FEL case. 

Figure 3: Spectral (red solid line) and temporal (blue solid 
line) distributions calculated by GENESIS in the 20 nm 
cascaded FEL case. 

SENSITIVITY TO ELECTRON BEAM 
PARAMETERS 

The sensitivity is studied for the FEL performances 
versus different electron beam parameters. 

Figure 4 illustrates the FEL power dependences on the 
beam energy. Maximum power is achieved when the 
energy is well tuned to the resonant wavelength defined 
by the undulator magnetic fields. The decrease in peak 
power is sharper for higher energies because the gain 
decreases at shorter wavelength. A 10 % FEL peak power 
reduction from reference case sets a tolerance on the 
electron beam energy between -0.034 % and +0.065 % of 
the reference value (400 MeV). 

Figure 5 illustrates the FEL power dependences on the 
energy spread. An increase of energy spread leads to a 
reduced gain and a smaller peak power. A 10 % FEL peak 
power reduction from reference case sets the tolerance on 
the energy spread of less than + 24 % of the reference 
value (2*10-4). 

Figure 6 illustrates the FEL power dependences on the 
emittance. An increase of emittance also leads to a 
reduced gain and a smaller peak power, such as the 
energy spread. A 10 % FEL peak power reduction from 
reference case sets the tolerance on the emittance of less 
than +4.9 % of the reference value (1.5� mm mrad). 

 Figure 7 illustrates the FEL power dependences on the 
peak current without changing of bunch length. The 
higher the peak current is increased, the higher the FEL 
peak power is also increased since more electrons 
participate to the process. A 10 % FEL peak power 
reduction from reference case sets the tolerance on the 
peak current of more than -3.3 % of the reference value 
(0.4 kA). 
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Figure 4: Power dependences on the beam energy in the 
20 nm cascaded FEL case.  
�: the peak power of the FEL pulse, �: the spectrum 
intensity. 

Figure 5: Power dependences on the beam energy spread 
in the 20 nm cascaded FEL case.  
�: the peak power of the FEL pulse, �: the spectrum 
intensity. 

Figure 6: Power dependences on the beam emittance in 
the 20 nm cascaded FEL case. The matching condition at 
the undulators isn’t changed from the reference case. 
�: the peak power of the FEL pulse, �: the spectrum 
intensity. 

Figure 7: Power dependences on the peak current without 
changing of the bunch length in the 20 nm cascaded FEL 
case.  
�: the peak power of the FEL pulse, �: the spectrum 
intensity. 

SENSITIVITY TO SEEDING SOURCE 
PARAMETER 

Figure 8 illustrates the FEL power dependences on the 
seed power without changing of the seed pulse duration. 
The higher the seed laser power increases, the higher the 
FEL peak power increases. The saturation is achieved at 
about 3 GW because the peak power doesn’t change 
around the region of seeding power. As the results, a 10 % 
FEL peak power reduction from reference case sets the 
tolerance on the seed power of more than -38 % of the 
reference value (10 kW). 

Figure 8: Power dependences on the seed power without 
changing of the seed pulse duration in the 20 nm cascaded 
FEL case.  
�: the peak power of the FEL pulse, �: the spectrum 
intensity. 

SENSITIVITY TO UNDULATOR 
PARAMETER 

Figure 9 illustrates the FEL power dependences on the 
undulator deflection parameter of the radiators. A 10 % 
FEL peak power reduction from reference case sets the 
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tolerance on the deflection parameter of between  
-0.076 % and +0.22 % of the reference value (0.799). 

Figure 9: Power dependences on the deflection parameter 
of the radiators in the 20 nm cascaded FEL case.  
�: the peak power of the FEL pulse, �: the spectrum 
intensity. 

CONCLUSION 
First parameters sensitivities of LUNEX5 have been 

studied by using GENESIS. Table 2 shows the summary 
of the obtained tolerances. The beam energy and the 
deflection parameter of radiators are drastically critical. 
We continue to study the other parameters by using 

GENESIS and deepen the discussions toward the 
implementation of LUNEX5. 
 
Table 2: Required Performance for the Variation of FEL 
Peak Power Less Than 10 % to the Reference 
Parameters Taken for the 20 nm Cascade Case; Electron 
Beam, Seed Laser, and Undulator Parameters 
Electron 
beam 
Beam energy 

Reference 
value 
400 MeV  

Tolerance 
 
-0.034 ~ +0.065 % 

Energy spread 2*10-4  Less than +24 % 
Emmitance 1.5 ���

mm.mrad  
 
Less than +4.9 % 

Peak current 0.4 kA More than -3.3 % 
Seed laser   
Peak power 10 kW More than -38% 
Undulator 
(radiator) 
Deflection 
parameter 

 
 
 
0.799 

 
 
 
-0.076 ~ +0.22 % 
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