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Abstract 

The Colorado State University (CSU) Accelerator 
Facility will include a 6-MeV L-Band electron linear 
accelerator (linac) with a free-electron laser (FEL) system 
capable of producing Terahertz (THz) radiation, a laser 
laboratory, a microwave test stand, and a magnetic test 
stand. The photocathode drive linac will be used in 
conjunction with a hybrid undulator capable of producing 
THz radiation. Details of the systems used in CSU 
Accelerator Facility are discussed. 

FACILITY GOALS 
There is an expanding demand across a wide variety of 

discipline in academia, laboratories, and industry for 
particle accelerators [1,2]. The growing demand of trained 
accelerator experts continues to motivate the expansion of 
facilities in a university setting dedicated to training 
engineers and physicists in accelerator technology. Part of 
the goal of the CSU Accelerator Facility is to provide a 
place where both accelerator research and training of 
high-school through post-doctoral students can flourish. 
The CSU Accelerator Facility will initially focus on 
generating long-wavelength free-electron lasers, electron-
beam components, and peripherals for free-electron lasers 
and other light sources. It will also serve as a test bed for 
particle and laser beam research and development. 

FACILITY OVERVIEW 
There are four major systems to the CSU Accelerator 

Facility: an accelerator and FEL system, a laser 
laboratory, a microwave test stand, and a magnetic test 
stand. A diagram of the setup of the major accelerator and 
FEL components is shown in Figure 1. Overviews of the 
accelerator, undulator, the laser laboratory, the microwave 
test stand, and the magnetic test stand are given in the 
following sections.  

The Accelerator 
The linac to be used was constructed by the Los Alamos 

National Laboratory for the University of Twente. The 
University of Twente has generously donated the entire 
system for use at CSU and their team will remain in close 
collaboration with CSU.  

The accelerator is a five and a half cell copper structure 
operating at an RF frequency of 1.3 GHz. The accelerator 

will operate at a 10-Hz repetition rate and a micropulse 
repetition rate of 81.25 MHz (the 16th subharmonic of 1.3 
GHz). Additional specifications are given in Table 1. 

Table 1: Linear Accelerator Characteristics 

Energy 6 MeV 

Number of Cells 5 ½ 

RF Frequency 1.3 GHz 

Unloaded Q 18,000 

Axial Electric Field  

    Cell no. 1 26 MV/m 

    Cell No. 2 14.4 MV/m 

    Cell No. 3 - 6 10.6 MV/m 

Peak Solenoid Field 1,200 G 

 

Figure 1: Schematic of the accelerator and FEL. 
 

Initial characterization of a single linac cell was 
performed using SUPERFISH (Figure 2) [3]. This 
included an assessment of the variation in resonant 
frequency due to thermal expansion. Thermal expansion 
calculations showed a possible shift of about 200 kHz/C 
that is acceptable for resonant tuning via water 
temperature control. 

Work is currently being done to build a total cavity 
model combined with solenoid and beamline models to 
establish the initial setup requirements for operation. 

The cathode preparation chamber for the accelerator 
can support a variety of cathode types, including those 
previously used:  CsK2Sb, K3Sb, and copper. In the high 
vacuum of the preparation chamber (~4x10-10 Torr), it has 
been demonstrated that acceptable cathode lifetimes can 
be on the order of days.  

* Work supported by Colorado State University, the Office of Naval
Research, and the High-Energy Laser Joint Technology Office. 
Corresponding author: Milton@engr.colostate.edu 

Proceedings of FEL2012, Nara, Japan WEPD03

Progress and Projects

ISBN 978-3-95450-123-6

373 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s



 

Figure 2: Single cell model of the RF cavity performed 
using SUPERFISH. 

The Laser Laboratory 
The laser laboratory will have a Coherent, Inc. mode-

locked Ti:Sapphire oscillator operating at a repetition rate 
of 81.25 MHz coupled to a regenerative amplifier single 
pass amplifier combination operating at up to 1 kHz. This 
laser system will be used both as the drive laser for the 
photocathode and to perform independent experiments. 
The Boeing Company generously donated the laser to 
CSU. 

Table 2: Laser System Characteristics 

Micra Oscillator  

  Avg. Power >300 mW 

  Rep. Rate 81.25 MHz 

  Pulse Width    <15 fs 

Legend Elite Duo Amplifier  

  Avg. Power (800 nm) >10 W @ 1kHz 

  Avg. Power (256 nm) >1 W 

  Pulse Duration 40 fs (FWHM) 

 
An optical transport system has been designed to 

achieve the desired laser pulse parameters at the cathode 
for the aforementioned Ti:Sapphire laser system. A 
schematic of the component layout on the optical table 
next to the photocathode rf gun is shown in Figure 3. 

Figure 3: Layout of the optical table next to the 
photocathode-driven accelerator. 

The Undulator 
The undulator was also part of the donation from the 

University of Twente [4]. The hybrid undulator is 
powered by Sm1Co5 magnets and utilizes curved 2V-
permendur pole tips to achieve equal focusing in both 
planes. It has a nominal design peak magnetic field of 
0.61 T with a period of 25 mm, and yields a K-value of 
about 1.  The undulator has 50 periods and a gap size of 8 
mm. The undulator parameters are given in Table 3. 

In the original setup this undulator was placed inside an 
optical cavity with planar mirrors at either end. The 
downstream planar mirror was movable over a 1-cm 
distance to allow for tuning of the cavity. After the 
undulator, there was a spectrometer to capture the energy 
spectrum of the electron bunch and an interferometer to 
examine the FEL spectrum [5] as shown in Figure 4.  

CURRENT STATUS OF THE FACILITY 
At present (Summer 2012), the laboratory space is 

being cleared prior to installation of the accelerator and 
undulator. The magnet measurement and microwave 
measurement laboratories are currently being set up in a 
separate dedicated lab area.  

The accelerator is set to arrive at CSU in early Fall 
2012. The laser system will arrive at CSU in early 
September. All linac and laser system components will be 
tested in the laser, microwave, and magnetic measurement 
laboratories that have been established at CSU. Peripheral 
system checkout and installation will occur soon 
thereafter.  

The Magnetic Measurements Laboratory 
At present, a Lake Shore Cryotronics, Inc. Gaussmeter 

has been set up and mounted to take magnetic field profile 
measurements of the accelerator components. This will 
serve as the test-bed for evaluating the components for the 
6-MeV linac and other components developed in our 
group. A LabVIEW program has been developed to 
iterate through specified magnet current setpoints and 
record the current settings and magnetic field values.  
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an electron bunch is present. The plasma THz pulses in 
the lab could in theory be used to simulate low emittance, 
high current bunches. Measurement of the simulated 
bunch profiles by the EO crystal systems will be 
compared against a balanced diode detection system 
known to be too susceptible to noise to be useful in a 
beam environment. [7,8] 

Work will also be conducted on the testing of new 
materials for photocathode use. The first of these 
experiments will be centered on 12CaO-7Al2O3 (electride), 
a crystalline ceramic. Electride is a promising candidate 
for use as a photocathode material due to its very low 
work function of 0.82 eV [9] and resistance to 
contamination. Using the laser laboratory at CSU, 
investigation into electride’s quantum yield as a function 
of incident light wavelength will be performed.  
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