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Abstract 
A THz radiation source in a form of coherent radiation 

from short electron bunches has been constructed at the 
Plasma and Beam Physics (PBP) research facility, Chiang 
Mai University. The accelerator system consists of an RF-
gun with a thermionic cathode, an alpha-magnet as a 
magnetic bunch compressor, and a SLAC-type linear 
accelerator. Coherent transition radiation emitted from 
short electron bunches passing through an Al-vacuum 
interface was used as the THz radiation source. This THz 
radiation can be used as a source of the THz imaging 
system and THz spectroscopy. Details of the accelerator 
system and THz radiation production will be presented. A 
plan for extension to accommodate Free Electron Lasers 
(FEL) optimized for mid-infrared and far-infrared/THz 
radiation will also be discussed. 

INTRODUCTION 
THz radiation is electromagnetic radiation spectrum 

which has wavelength of 1000µm to 100 µm (300 GHz - 
3 THz) and lies in gap between Microwave and Infrared.  
In the past, this gap is unexplored region but nowadays 
technologiesand applications of THz radiation were 
developed rapidly and were reviewed in [1-4]. A THz 
facility based on femtosecond electron bunches has been 
established at the Plasma and Beam Physics research 
facility (PBP), formerly the Fast Neutron Research 
Facility (FNRF), Chiang Mai University. Figure 1 shows 
a schematic layout of the system.The main components of 
the system are a thermionic cathode RF-gun, an alpha-

magnet as a magnetic bunch compressor, a SLAC-type 
linear accelerator (linac), beam steering and focusing 
elements, and beam diagnostic instruments. 

The 1-1/2 cell S-band RF-gun was designed and 
optimized [5] for bunch compression such that the first 
electron is accelerated and reaches the end of the half-cell 
just before the field becomes decelerating. It is then 
further accelerated through the full-cell to reach 
maximum kinetic energy of 2.0-2.5 MeV at the gun-exit 
depending on accelerating field gradients. Later electrons 
feel some decelerating fields and gain less and less overall 
energyresulting in a well-defined correlation between 
energy and time for bunch compression. Electron bunches 
of 20-30 ps from the RF-gun are then compressed in an 
-magnet, where the particle path length increases with 
energy. This allows the lower energy particles, emitted 
later in each bunch, to catch up with the front for effective 
bunch compression. The optimized and compressed part 
of the electron bunch is filtered by energy slits located in 
the alpha-magnet vacuum chamber and then transported 
through the linac and the beam transport line to 
experimental stations. At the experimental station, the 
bunches are compressed to less than 1 ps [6]. These short 
electron pulses can be used to produce high intensity THz 
radiation in the form of coherent transition radiation. 
Typical operating parameters and electron beam 
characteristics are shown in Table 1. 

 
 

 

 

Figure 1: Schematic diagram of the accelerator system at Chiang Mai University for generation of short electron 
bunches and THz radiation [Q:quadrupole magnet, CT:current monitor, SC:screen, TR: transition radiation]. 
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Table 1: Operating and Beam Parameters 

Parameters RF-gun Linac 

Max. beam energy [MeV] 2.5 - 3 10-15 

Macropulse peak current [mA] 1000 150  

Beam pulse length [s] ~2 ~0.8 

Macropulserepetation rate [Hz] 10 10 

Number of microbunch/macropulse 5700 2300  

Number of electrons/macropulse 1.4109 6108 

 

GENERATION OF THzRADIATION 
Total electromagnetic radiation emitted from a bunch 

of N electrons at radiation frequency   is 
( ) ( )[1 ( 1) ( )],eI NI N f      

where )(eI  is the radiation intensity from a single 

electron and the bunch form factor f() is the Fourier 
transformation of the longitudinal bunch distribution 
squared. As a consequence, the short bunch is suitable 
and desired for production of broadband radiation 
spectrum. At a wavelength about or longer than the bunch 
length, the radiation from an electron bunch becomes 
coherent and the intensity of coherent radiation, 
proportional to the number of radiating electrons squared,  
exceeds greatly that of incoherent radiation at the same 
wavelength. Electron bunches of around 100 fs can 
provide broadband radiation in THz regime covering up 
to 3 THz [7]. 

The electron beam after acceleration is used to generate 
THz radiation is in the form of coherent transition 
radiation (TR). At the experimental station, transition 
radiationis produced by placing an aluminium foil (Al-
foil) in the electron path, representing a transition 
between vacuum and Al-foil. The Al-foil radiator is 25.4 
m thick and 24 mmin diameter. The radiator is tilted by 
45o facing the electron beam direction. The backward 
transition radiation is emitted perpendicular to the beam 
axis and transmits through a high density polyethylene 
(HDPE) window of 1.25-mm-thick and 32-mm diameter.  

A copper light cone or a THz lens are used to collect 
the THz radiation into a room-temperature pyroelectric 
detector. The radiation energy of 19 J per macropulse or 
a peak power of 24 W was measured by collecting over 
an acceptance angle of 160 mrad. Experimentally, the 
transition radiation spatial distribution as well as 
horizontal and vertical polarizations of radiation were 
observed using a PYROCAM and a wire-grid polarizer 
from Graseby-Spec (Model IGP223). The results are 
shown in Fig. 2.  An asymmetry shown up in horizontally 
polarized beam should very well be a result of the Al-foil 
orientation which is tilted 45 horizontally as predicted 
theoretically. 

The radiation spectrum measured using a Michelson 
interferometer is shown in Fig. 3 (dot-line). The available 
THz radiation covers from 5 cm-1 to around 80 cm-1 

wavenumber (0.15 THz – 2.4 THz). At low frequency (< 
5 cm-1), the spectrum was suppressed by effects of the 
beam splitter and the periodic response is the effect of the 
pyroelectric detector [8].  The spectrum seem to extend to 
above  80 cm-1 (2.4 THz) where noise becomes dominate. 
These can be further minimized with better detection and 
amplification system. 

 

Figure 2: THz transition radiation profiles taken with a 
polarizer rotated 0, 45, 90, 135, 180 degree respectively. 
The last profile is taken without any polarizer.  
 

Figure 3: The radiation power spectra taken in humid air 
(solid) and in ambient air (dot-line). 
 

THz SPECTROSCOPY AND IMAGING 
THz spectroscopy can be done easily by measuring 

power transmission or power absorption of a sample via a 
Michelson interferometer and the Fourier Transformation. 
As shown in Fig. 3 (solid), the radiation spectrum taken in 
humid-air reveals several water absorption lines. 
Although phase information has been lost in the 
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spectroscopy. Plan for future expansion with a planar 
undulator will allow more coverage of the IR-THz 
spectrum regime.  
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