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Hybrid EEHG-

HGHG Scheme  

Part One 
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 High Gain Harmonic Generation uses a 
single modulator and a single chicane to 
generate harmonics in the electron 
current profile. 

 The bunching factor at higher harmonics 
is severely limited by the electron beam 
energy spread1: 

High Gain Harmonic Generation 

[1] L.H. Yu, Phys. Rev. A (1991) 
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 Echo-Enabled 
Harmonic 
Generation1 uses 2 
modulators and 2 
chicanes.  The 1st 
chicane is large, and 
breaks the 
modulated beam into 
energy bands. 

 Theory shows that 
EEHG has a very 
favorable scaling 
with harmonic 
number1: 

Echo-Enabled Harmonic Generation 

[1] Stupakov, PRL (2009) 
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 With EEHG, you modulate beam, then send through large chicane so 
that you get energy bands. 

 Without any additional modulation, beam passes through a point where 
there is bunching at higher harmonics. 

 Can use beam at this point to get “free”radiation at a higher harmonic, 
then break beam into energy bands. 

Before Energy Bands, you get 

Harmonic Bunching 
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Chicane #1 200 nm 

Modulator 

Radiator 50 nm 

Radiator 

Chicane #2 50 nm 

Modulator 

Chicane #3 
Seed 

Laser 

Electron 

Beam 

 Phase space distorts (compared to EEHG) in 50 nm radiator, but does 
not change required R56s from EEHG theory.  
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 EEHG theory gives: 

    3/1

22 81.01 mmBAm 

With                        ,                                     ,  

  

EEA /11 
01

)1(

561 / EkRB E 12 / kk

For high harmonic numbers, you get: 

  
21 mBB 

  21 1 BmB  and 
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B


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     By producing кth harmonic in a radiator section, you can achieve 

the same final harmonic with m smaller by the factor к.  Size of 
chicanes also goes down by ~ к.  Higher harmonics can be 
achieved without ISR, inter-particle collisions, and nonlinearities 
playing as important a role. 
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The Effects of “Parasitic Modulation” 
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Anew 

RMS Energy Spread 

Bunching Factor, 
167th Harmonic 

Chicane 

#1 
200 nm 

Modulat

or 

12 Å Undulator 50 nm 

Radiat

or 

Chicane #2 50 nm 

Modula

tor 

Chicane #3 
200 

nm 

Laser 

1.8 

GeV E-

Beam 

A1 B0 A0 B1 A2 B2 

Name Hybrid EEHG 

A1 3.3 3.3 

Bnew 0.32 NA 

Anew plot NA 

B1 12.68 13.0 

A2 3.52 3.52 

B2 0.075 0.075 
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Mirror Design to Delay 50 nm Radiation 
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Path of electron beam 

Path of 50 nm light 

β: Angle of light 

α: Angle of electron beam 
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Comparison With NGLS EEHG Design 
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 NGLS has a design to use EEHG to generate coherent 1.2 nm bunching 
from a 200 nm seed using EEHG1. 

 EEHG design predicts a theoretical bunching factor of 4.1%, and 
simulation gives bunching of 2.6%.  Requires 2 lasers, one at 31.9 MW 
and one at 127.1 MW. 

  New hybrid design gives a 
theoretical bunching of 10%, 
simulations (with ideal R56s and 
simple lenses as mirrors) gives 6% 
bunching at 1.2 nm.  Requires only 
one 16 MW laser, with weaker 
chicanes than EEHG. 

 Hybrid design requires one extra 
chicane and one extra wiggler. 

[1] G. Penn and M. Reinsch, J. Mod. Optics, 

58, 16 (2011) p. 1404 
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Part Two 
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Laser Modulator with 

Double EEX Compressor  
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• The Emittance Exchanger (EEX) uses a deflecting cavity sandwiched between two 

doglegs to swap the emittances between the longitudinal dimension and a transverse 

dimension. 

• Zeroing out the block-diagonal elements requires correct adjustment of the cavity strength. 

• Beyond that, multiple parameters can be adjusted to play with specific elements in the 

transfer matrix. 

 

Introduction: EEX Basics 
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EEX Compressor Setup 

This idea is similar to a design proposed by Zholents,Zolotorev (PAC11). 

        

, ,   

• Seed the electron beam with a 200 nm laser, then compress beam down 100x. 

• One EEX swaps x and z emittances, and a second EEX swaps them back.  In between, a 

transverse focusing telescope in between the EEXs will provide longitudinal beam 

compression, without any need for a chirp.  

• Challenge is to eliminate nonlinearities by using quads, sextupoles, and octopoles. 

 

 

200 nm laser 

modulator 

EEX #1 

Telescope 

compress in x 

by 100 
EEX #2 
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Bulk Beam Compression Results 

• Quads and sextupoles used to preserve emittance 

in x and z, while compressing z by a factor of 100. 

• Nonlinearity remains in y, bringing y emittance up to 

0.175 um (from 0.1 um). 

• Unfortunately, nonlinearities remain that wash out 

the 200 nm modulation. 

• Working on finding solution that preserves y 

emittance and modulation. 

σ_i = (0.1 0.1 0.4) mm 

 

ε_i = (0.100 0.100 7.83) μm 

 

σ_f = (0.074 0.164 0.00397) mm 

 

ε_f = (0.101 0.175 8.08) μm 
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Using 2 Emittance 

Exchangers, bring 

wavelength down 

by ~100 by 

compressing 

electron beam 

Seed 1 GeV 

electron 

beam with 

200 nm laser 
Accelerate beam to 

12 GeV while 

preserving bunching 

Use EEHG or 

EEHG+HGHG 

to bring 

wavelength 

down another 

60x, to 0.29 Å 

Undulator 

generates 0.29 Å 

x-rays. 

Introduction to Our Scheme 

 Seed electron beam at 1 GeV with 200 nm laser. 

 Use double emittance exchanger to compress electron beam by ~100, 
while also compressing bunching down to 2 nm.  At higher electron beam 
energies, bunching would wash out from ISR. 

 Accelerate beam to 12 GeV, while preserving the 2 nm bunching. 

 Finally, use hybrid EEHG-HGHG scheme seeded with beam bunching to 
bring wavelength down another 60x. 
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Conclusions 

 New single laser hybrid HGHG-EEHG design only 
needs a single laser at relatively low power, and gets 
high bunching factors at very high harmonic number with 
modest sized chicanes. 

 HGHG radiator distorts phase space, but extra energy 
spread is small, and simulation shows that bunching is 
only mildly degraded from pure EEHG.  

 Double EEX looks promising: we can preserve 0.1 μm 
emittances while compressing 100x.  

 Work in progress for Double EEX: preserve nm-scale 
modulation. 
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Extra Slides 

Extra Slides 
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Preservation of 200 nm modulation in double EEX 

• A zero-emittance beam, with 10e-5 energy spread, offers 17-nm longitudinal 

resolution “out of the box.” 

• With sextupole and octopole correctors, that resolution improves to less than 1 nm. 

• However, finite beam size (x,y) quickly destroys this resolution. 

• Optimization of the longitudinal resolution is being actively pursued, with a goal to 

preserve nanometer-scale modulations and bunching. 
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Introduction to Single Laser Hybrid HGHG-EEHG Scheme  
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Chicane #1 200 nm 

Modulator 

12 Å Undulator 50 nm 

Radiator 

Chicane #2 50 nm 

Modulator 

Chicane #3 

EEHG HGHG 

Seed 

Laser 

Electron

beam 

 First seed electron beam with 200 nm laser. 

 After 200 nm modulator, use chicane #1 to get bunching at 50 nm 
(HGHG), and then generate 50 nm radiation in radiator. 

  Use chicane #2  to create EEHG-like energy bands, while delaying and 
focusing 50 nm radiation with mirrors. 

 Chicane #3 produces bunching at large harmonic of laser   
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Description of Parameters in Simulation 
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Chicane # R56 

1 363 µm 

2 12.1 mm 

3 68.3 µm 

Wiggler 

# 

Aw0 λw Length 

1 4.872 20 cm 1 m 

2 4.0 7.29 cm 0.875 m 

3 4.0 7.29 cm 0.875 m 

4 0.7 2 cm 25 m 

Beam Input  Value 

Energy 1.8 GeV 

E Spread 50 keV 

Current 500 A 

εN 0.6 

Param. Value 

50 nm bn after 

chicane #1 

13% 

50 nm power 

after wiggler #1 

14.1MW 
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Harmonic Generation with a Phase 

Chirp1 
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A Gaussian laser beam with a 

frequency chirp is given by: 

Departure from FT limited pulse: 

For Ti:Sa laser, M2-1 = ~10-2, ie. 

almost FT limited.  After HG, you get: 

This has a departure from FT limited 

pulse given by: 

For NGLS, N~667, which will be 

94 more broadband than FT limit. 

[1] G. Geloni, V. Kocharyan, and E. Saldin, 

“Analytical studies of constrains on the 

performance for EEHG FEL seed lasers” 
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Phase Chirp with Short Electron 

Beam 

If you are in a regime where the electron 

beam is shorter than the laser pulse, σe 

<< σL, then: 
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Let s denote the factor by which the laser is 

longer than the electron beam.  Then you 

can substitute σL = s σe  into above to get: 
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Deviation from FFT limit is now: 

4222 /1 sNM N 

For a high quality beam, initial M0
2 

is:  
2/1M 22

0 

Then we have a formula for the 

necessary quality of a long laser, so 

that the final harmonic is FT limited: 

 
1

12
2

2

0




s

MN

For M0
2 -1 = 1%, need a laser that is 

11 times longer than electron beam 

to achieve FT limit. 

 

With less power demands, can you 

get a longer electron pulse with the 

same M0
2? 



Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D 

Parasitic Modulation in 50 nm radiator 
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You want to maximize power out, while minimizing increase in energy 
spread from 50 nm radiator. 

Assume 50 nm bunching factor is constant in radiator.  Then you get:  
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Combining these, we get: 

  
 You need high bunching factor at 4th 

harmonic to get favorable ratio of 50 nm 
power to induced energy spread.  Length 
of radiator does not effect ratio. 
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Harmonic Generation with Hard X-

rays 

 We developed an HGHG-EEHG scheme for 
stepping from 1 nm to 0.25 Å at 20 GeV (old 
MaRIE parameters). 

 Uses bunching in beam, instead of laser seed, 
to generate harmonics. 

 Biggest issue is 10 fs slippage between x-rays 
and beam in large chicane. 

 Input bunching is 10% at 1 nm, with an energy 
spread of 5x10-5, output is 9.2% at 0.25 Å with 
an energy spread of 2.1x10-4. 
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Chicane #1 200 nm 

Modulator 

12 Å Undulator 50 nm 

Radiator 

Chicane #2 50 nm 

Modulator 

Chicane #3 
200 nm 

Laser 

1.8 GeV 

E-Beam 

200 nm 

Modulator 

12 Å Undulator 200 nm 

Modulator 200 nm 

Laser 

1.8 GeV 

E-Beam 200 nm 

Laser 

Single Seed HGHG-EEHG 

EEHG 
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Path of electron 

beam 

Path of 50 nm light 

β: Angle of light 

α: Angle of electron beam 
D 

L2 
L1 
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200 nm modulator 

• 200 nm modulator is same design as NGLS – 1 meter long, 

Aw0 = 4.872 and wiggler period = 20 cm. 

• Light can be focused down a lot, so that power requirement 

is low. 



Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D 

200 nm modulator 

• Right now I apply an ideal R56, but let the particles drift an appropriate 

amount to approximate the emittance nonlinearity. 

• I include ISR in wigglers, but not chicanes (need Elegant). 

• Bunching at 4th harmonic is 13%. 
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50 nm modulator 

• 50 nm wigglers are Aw0 = 4.0, wiggler period 7.29 cm.  This has 

not been optimized. 

• The power I get is less than what NGLS design uses in final 

modulator, but still seems adequate. 
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50 nm modulator 

• It is impossible to generate 50 nm 

radiation without also modulating the 

beam.  Ratio of power to modulation is: 
e

jmcAP b

~2




• Increase in energy spread is small, but phase space is distorted over 

traditional EEHG.  Kinetic code gives 10% bunching at 12 Å, but large chicane 

is larger than pure EEHG, and some harmonics may be suppressed. 
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Second 50 nm modulator 

• ISR, nonlinearity, and finite transverse radiation size reduce energy 

bands in wiggler. 

• Still, I am getting 6% bunching at 12 Å, I may be able to improve this 

by optimizing Aw0 and transverse electron beam size. 
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Second 50 nm modulator 

• Size of 50 nm radiation is very important. 

• Also need to keep distance between 50 nm and 12 Å wiggler short.  

Because my final chicane is ~1/3 size of current NGLS, we can make 

this distance ~1 m. 
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12 Å Undulator 

• Saturation length is 10 m shorter than NGLS 

design, power about the same. 


