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Situation

How do FEL’s compare with other coherent light sources?
Is the single-pass FEL really a laser?

State of the art of transverse coherence measurements on FEL's:

 FLASH, TESLA test facility, etc. [A.Singeretal., Phys. Rev. Lett. 101, 254801 (2008);
A. Singer et al., Opt. Express. 20, 16 (2012); etc.]

* LCLS [I. A. vartanyants et al., Phys. Rev. Lett. 107, 144801 (2011)]
e MAX-Lab Test-FEL 1. Schwenke, talk and proceedings of FEL 2011

Purpose of measurements at FERMI@Elettra:

» Characterize a new kind of user-dedicated FEL source
(seeded, harmonic generation, extreme-ultraviolet)

» Compare seeded and SASE FEL configurations

» Characterize the light for users
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FEL configuration
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Setup for Young's experiment

Setup design: C. Svetina & S. Gerusina

Diffraction Diffraction
pattern 1 pattern 2

Interference 1+2
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Principle

Coherence of light:
ability to interfere

Degree of coherence
~> « quality » of the interference
= visibility \V of the fringes

IF: 1) the spectrum is narrow enough
2) the intensities from both slits are equal
3) the temporal coherence does not affect the quality of the interference

Imax(x) = Imin(x)
Imax(x) i Imin(x)

THEN: Degree of transverse coherence = V(x) =

V =1 - full coherence (e.g., single-mode lasers)
V = 0 = incoherent light
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Experimental results in standard conditions

Low signal/noise,
hence V might be
higher



Effect of amplification length and saturation
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Effect of amplification length and saturation
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Effect of amplification length and saturation
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Effect of amplification length and saturation
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Comparison with other femtosecond EUV sources

@Elettra 32.5 nm
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Comparison with other femtosecond EUV sources

IHG 33-45 nm in fiber => = single-mode EUV light
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\tosecond EUV sources
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FLASH 13.7 nm in 2006

2 [A. Singer et al., Phys. Rev. Lett. 101, 254801 (2008)
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Comparison with other femtosecond EUV sources
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Comparison with other femtosecond EUV sources

FERMI@Elettra 3

focused light by means

3.7 nm in 2006
13.7 nm in 2006 ongoing at FERMI@Elettra
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=1 mode
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Comparison with GSM: modes & coherence at z = 65'm

Assumption: FERMI@Elettra = GSM source (size and divergence measured)
—>Theoretical mode proportions and
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Comparison with GSM: modes & coherence at z = 65 m

Assumption: FERMI@Elettra = GSM source (size and divergence measured)
—>Theoretical mode proportions and
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Comparison with GSM: intensity at z = 73.5 m
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»> The GSMiis in good agreement with the FERMI@Elettra measurements
@32.5nm for transverse coherence and intensity distributions
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Conclusion

» « Good » transverse coherence of FERMI@Elettra
» Possibility to consider its light as a Gauss-Schell model beam
» Extend studies to recent Shack-Hartman measurements

» Difference found between seeded and SASE FELs.
—> Comparison has to be pushed i.e., do measurements with similar
setups on different facilities

Possible to try in SASE mode on FERMI@Elettra! seeE. Allaria et al., TUOB02

- How could the seed act for improving transverse qualities?

»> More generaly, how to manage the spatial characteristics of the
FEL light? (spatial quality / emittance of the electron beam, etc.)
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Prediction of Gauss-Schell Model @ 20.8 and 13.7 nm
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Focusing by bendable mirrors in
Kirkpatrick-Baez configuration (f=1.2m)
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Comparison affter focusing
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Figure 6: pattern observed on CCD_pos.01 for the couple of slits d=4mm.




The second order correlations of the wave fields are
described in the theory of coherence by the mutual coher-
ence function (MCF) I'5(7), that defines the correlations
between two complex values of the electric field E(ry, 1)
and E™(r,, t + 7) at different points r; and r, and separated
by the time interval 7

I'(ry, ry, T) = {E(_I'l_.- [E* (rsy, 1 + 7)), (1)

where the brackets () indicate the ensemble average.
Correlations of the field in the spatial-frequency domain
arc determined by the cross-spectral density function
(CSD) W(ry, ry, @), which is a Fourier transform of the
MCF

'-. oa N g - -~
Wi(r, r, w) = f I'a(7)e™ ' 7d T (2)
— 0

The spectral density of the field S(r, w) is defined as the
CSD function taken at the same position S(r, @) =
Wi(r, r, w). The normalized versions of the two functions
(1) and (2) are the complex degree of coherence y(ry, ra, 7)
and the spectral degree of coherence u(ry, ry, w),
respectively.







