First Direct Seeding at 38 nm

Christoph Lechner

FEL 2012 Nara, 08/28/2012

on behalf of the sFLASH team

Supported by BMBF under contract No. 05K10GU1 and by DFG GRK 1355.

Outline

- Introduction / Motivation
- The experiment
 - Layout
 - Procedures
- Seeding results at $\lambda=$ 38 nm

Motivation for Seeding

SASE Free-electron lasers

- pulsed radiation with wavelengths down to sub-Å
- transverse coherence
- typically limited longitudinal coherence: multiple uncorrelated longitudinal modes present

with seeding:

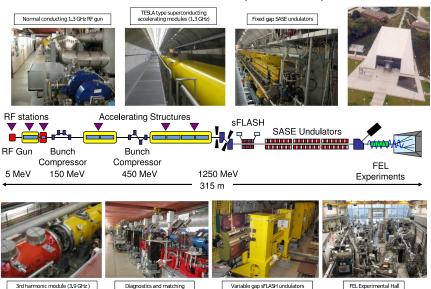
- amplify external coherent optical field
- longitudinal coherence of the FEL pulse determined by the external field

Motivation for Seeding

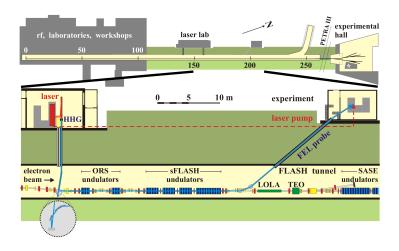
SASE Free-electron lasers

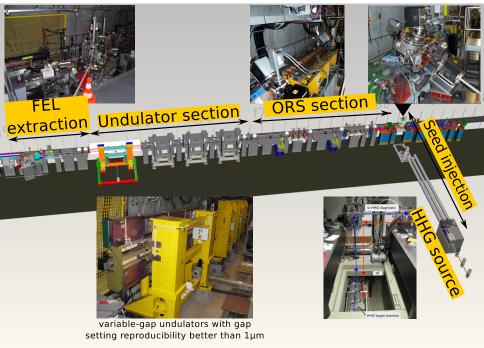
- pulsed radiation with wavelengths down to sub-Å
- transverse coherence
- typically limited longitudinal coherence: multiple uncorrelated longitudinal modes present

with seeding:


- amplify external coherent optical field
- longitudinal coherence of the FEL pulse determined by the external field

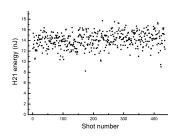
Goals:

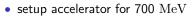

- → high peak power (GW level)
- \rightarrow stable pulse spectrum and energy
- → high longitudinal coherence



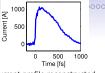
FLASH at DESY (Hamburg)

Layout of the sFLASH Experiment

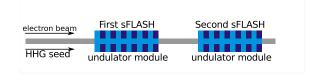


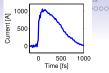

HHG Source Performance

Typical HHG seed beam profile at the entrance of the first undulator:

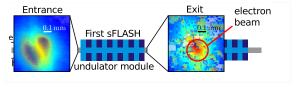


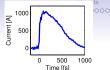
✓ At the source: energy in 21st harmonic 14 nJ (10% rms stability)




- bunch charge 0.5 $\rm nC$
- feedback systems for compression and energy
- establish high FEL gain at correct wavelength
 - tuning sFLASH to SASE
 - spectral overlap of 21st harmonic ($\lambda = 38.1~\mathrm{nm}$) and sFLASH SASE

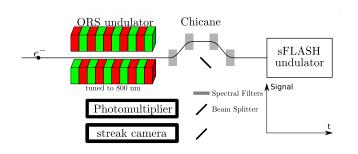
Current profile reconstructed from a THz single-shot spectrum


- ullet setup accelerator for 700 ${
 m MeV}$
 - bunch charge $0.5~\mathrm{nC}$
 - feedback systems for compression and energy
- establish high FEL gain at correct wavelength
 - tuning sFLASH to SASE
 - spectral overlap of 21st harmonic ($\lambda=38.1~\mathrm{nm})$ and sFLASH SASE
- transverse overlap (tolerances 50 $\mu\mathrm{m}$, 50 $\mu\mathrm{rad}$)

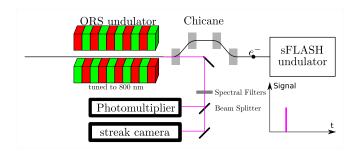


Current profile reconstructed from a THz single-shot spectrum

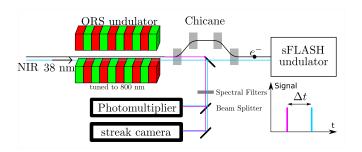
- setup accelerator for 700 MeV
 - bunch charge 0.5 nC
 - feedback systems for compression and energy
- establish high FEL gain at correct wavelength
 - tuning sFLASH to SASE
 - spectral overlap of 21st harmonic ($\lambda=38.1~\mathrm{nm}$) and sFLASH SASE
- transverse overlap (tolerances 50 $\mu\mathrm{m},$ 50 $\mu\mathrm{rad})$

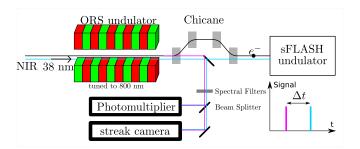


typical transverse profiles (electrons and HHG) at the first sFLASH undulator



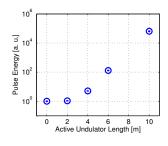
Current profile reconstructed from a THz single-shot spectrum

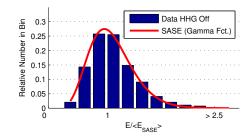

- temporal overlap
 - down to 1 ns: photomultiplier + oscilloscope
 - down to 10 ps : streak camera
 - finally: time scan (100 fs steps)


- temporal overlap
 - down to 1 ns: photomultiplier + oscilloscope
 - down to 10 ps : streak camera
 - finally: time scan (100 fs steps)

- temporal overlap
 - down to 1 ns: photomultiplier + oscilloscope
 - down to $10~\mathrm{ps}$: streak camera
 - finally: time scan (100 fs steps)

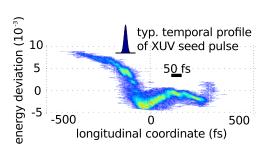
- temporal overlap
 - down to 1 ns: photomultiplier + oscilloscope
 - down to 10 ps: streak camera
 - finally: time scan (100 fs steps)

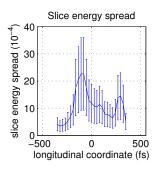

Durations (FWHM): electron bunch 300-400 fs, HHG seed pulse 20 fs


Tolerance 100 fs

FEL Amplifier Characterization

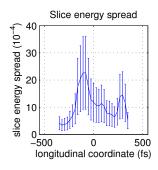
SASE mode

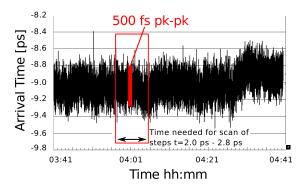

Power gain length about $0.65~\mathrm{m}$


Number of longitudinal modes: $M = 8.3 \pm 1.2$

 \Rightarrow Coherence time 6 $\mathrm{fs},$ radiation pulse length $\sim 50~\mathrm{fs}$

LOLA TDS

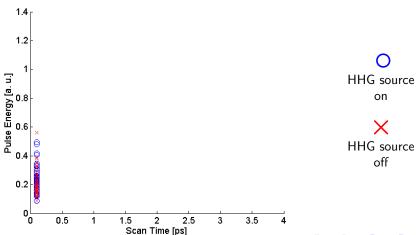

With the LOLA transverse deflecting structure (TDS) one can measure the longitudinal phase space after sFLASH undulators ...


LOLA TDS

With the LOLA transverse deflecting structure (TDS) one can measure the longitudinal phase space after sFLASH undulators ...

Electron Bunch Arrival Time During Measurements

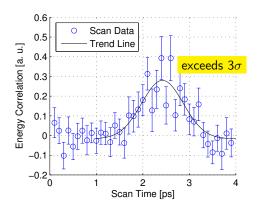
- arrival time feedback off due to single bunch operation
- future sFLASH scenario: make use of existing arrival time feedbacks in multibunch operation mode



SASE pulse duration estimated to 50 fs 500 fs pk-pk electron arrival jitter \Rightarrow limits probability for temporal overlap

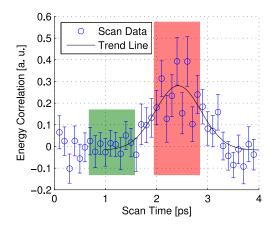
Temporal Fine Scan

Transverse, wavelength overlap and coarse temporal overlap established. Scan time to establish overlap.


Temporal Fine Scan

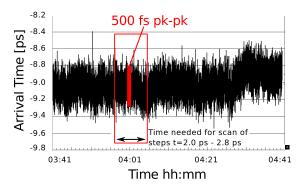
Transverse, wavelength overlap and coarse temporal overlap established. Scan time to establish overlap.

HHG source on


FEL Pulse Energy vs. Time Offset

For each scan step: Correlation of XUV seed pulse energy at the source and pulse energy in the FEL pulse

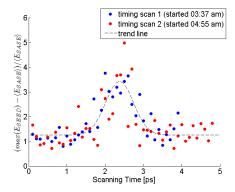
Alternative Data Analysis

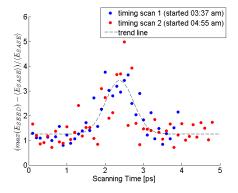


Alternative Data Analysis

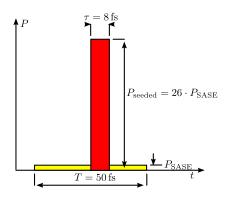
Histograms removed for copyright reasons (paper submitted).

Electron Bunch Arrival Time During Measurements


- arrival time feedback off due to single bunch operation
- future sFLASH scenario: make use of existing arrival time feedbacks in multibunch operation mode


SASE pulse duration estimated to 50 fs 500 fs pk-pk electron arrival jitter ⇒ limits probability for temporal overlap

Energy Contrast Measurement


Energy Contrast Measurement

What can we conclude from $\frac{\max(E_{\text{seed}}) - \langle E_{\text{SASE}} \rangle}{\langle E_{\text{SASE}} \rangle} = 4$ for excess of instantaneous power in the seeded part of the pulse?

From Energy Contrast to Power Increase

Model for expected time profile of the photon pulse

Assumptions:

- energy contrast of 4
- SASE pulse length $T=50~\mathrm{fs}$
- HHG pulse length $\tau=8~\mathrm{fs}$

Linear FEL amplifier

$$\tfrac{E_{\rm tot}}{E_{\rm SASE}} = \tfrac{T \cdot P_{\rm SASE} + \tau (P_{\rm seeded} - P_{\rm SASE})}{T \cdot P_{\rm SASE}}$$

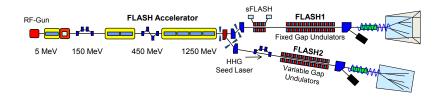
$$\Rightarrow P_{\text{seeded}} = 26 \cdot P_{\text{SASE}}$$

Summary and Outlook

- first seeding at wavelength $\lambda=38~\mathrm{nm}$ demonstrated
 - power contrast approx. 30
- lessons learned:
 - need for HHG pulse characterization at the entrance of the undulator
 - stability of temporal overlap limits fraction of seeded bunches
 - feedbacks have to be applied to electron beam and photon beam parameters

Summary and Outlook

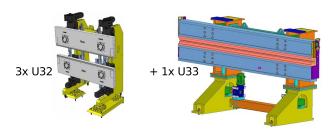
- first seeding at wavelength $\lambda=38~\mathrm{nm}$ demonstrated
 - power contrast approx. 30
- lessons learned:
 - need for HHG pulse characterization at the entrance of the undulator
 - stability of temporal overlap limits fraction of seeded bunches
 - feedbacks have to be applied to electron beam and photon beam parameters


Outlook:

- spectral phase control
- temporal characterization of seeded FEL radiation
- towards shorter wavelengths
- run sFLASH parallel to FLASH SASE

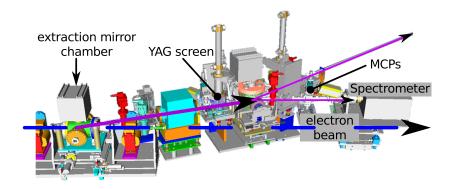
FLASH2 Beamline

Seeding will be a key asset of FLASH2.


Posters:

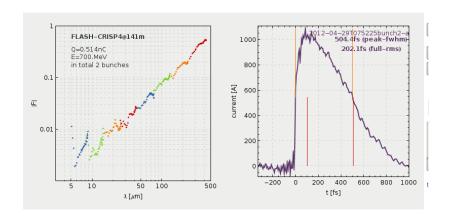
- \bullet Sven Ackermann et al: "Optimization of HHG Seeding between $10~\mathrm{nm}$ to $40~\mathrm{nm}$, TUPD11
- Katja Honkavaara: "Status of the FLASH II Project", WEPD07

Thank you for your attention


- S. Ackermann, A. Azima, S. Bajt, J. Bödewadt, F. Curbis, H. Dachraoui,
- H. Delsim-Hashemi, M. Drescher, S. Düsterer, B. Faatz, E. Hass,
- U. Hipp, K. Honkavaara, R. Ischebeck, S. Khan, T. Laarmann,
- C. Lechner, T. Maltezopoulos, V. Miltchev, M. Mittenzwey, M. Rehders,
- J. Rönsch-Schulenburg, J. Roßbach, H. Schlarb, S. Schreiber,
- L. Schroedter, R. Tarkeshian, M. Tischer, V. Wacker, M. Wieland

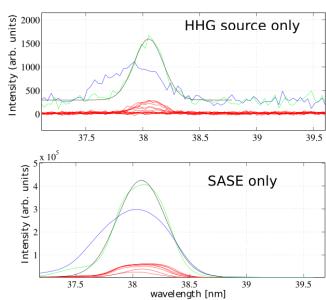
sFLASH Undulator Modules

	U32	U33
Minimum gap [mm]	9.0	9.8
Period length [mm]	31.4	33
No. of poles	120	240
Length [m]	2	4
maximum K value	2.72	3.03


Photon Extraction and Diagnostics

- Located after the sFLASH undulators
- Micro-channel plates (MCPs) used to detect FEL radiation pulse energy

CRISP4


Left: single-shot THz spectrum Right: Reconstructed current profile

Spectral Overlap

Spectral Overlap

