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HGHG FEL and FERMI FEL-1

Effects of electron beam longitudinal phase space
on the HGHG process

Experimental FEL spectral measurements at
FERMI

» Linearly chirped electron beam
* Microbunched electron beam
» Quadratically chirped electron beam

Conclusions
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el FERMI FELs TGS

L
The two FERMI FELs cover different spectral regions; FEL-1 designed for 80-20 nm, FEL-2 for 20-4nm.
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FEL-1 is in operation since December 2010. In the first year of operation (no x-band, laser heater)
serveral tens of uJ have been produced. From May 2012 more than 200 uJ in the nominal spectral
range have been produced.

to e-beam dump

FEL-2 have been already operated in the first stage and the second stage will be commissioned in
October 2012,
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dat  High Gain Harmonic Generation - HGHG "@'i:'?i'pr

HGHG scheme has been proposed as a way to partially solve the lack of
seeding sources at short wavelengths.
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Compared to SASE devices, generally more compact 18 it M e e ot

and nearly full temporally coherence output; many (blue), single shot SASE spectrum measured by blocking
the seed laser (red) and simulation the SASE spectrum

spectral parameters more easily controlled (e.g., pulse |after 20 m of NISUS structure (green). The average spac-

: ing between spikes in the SASE spectrum is used to esti-
Iength1 Chlrp) . mate the pulse length.

L.H. Yu et al. PRL 91, 074801 (2003)

After the initial HGHG demonstration experiment done at Brookhaven — BNL, HGHG
and Coherent Harmonic Generation (GHG) have been demonstrated and explored in
other facilities (UVSOR-Illgr), Elettra SR-FELT), Max-Lab FEL (sg), SPARCqT), SDUV-
FEL«cN), SLACusa)).
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dlet HGHG with no e-beam chirp ~ %S2

| ‘ Energy modulation of the phase space by
s IRRARNI the seed.
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Energy modulation converted into spatial
modulation.

| aono | Electron beam current strongly modulated
| at the seed wavelength, sharp spike
BJ | indicate strong harmonic components.
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eletir HGHG with no e-beam chirp =2
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the seed. _ _ _ g
Energy modulation converted into spatial g |
modulation. - sl
Electron beam current strongly modulated GeR R T
at the seed wavelength, sharp spike 08 . : : .
indicate strong harmonic components. el
3 : J ? : ] : . O 04Lb
1 ' & 02 H
5 ’ e i 19 1.95 7205 21 215
g 0 |
4, 0.8
g 0.6
' ' ‘ % 04
! ' § 02 \
g : ‘ 8.85 29 295 ~ 3I - 3.05 31 315
i, |
04 T T T
3500 > i » > ; > i 3500 g Hed
) 5 02
| & 01
g s 555 | 3.85 39 385 4L 4.05 4.1 4.15
§ frequency
| J L U U k | Spectral analysis of the bunching show
SO0 — aa 746 48 T50 152 154 1555‘} T I e T e 1 1 Strong harmonic Components'
F E L ,:,‘2;3,1% NNNNNNNNNNNNN %3m0 SPectral characterization of the FERMI pulses in the presence of electron-beam phase-space modulations



HGHG with linear e-beam chirp
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As a consequence of the beam compression
the wavelength of the bunching produced by
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dart  HGHG with quadratic e-beam chirp T2

beam energy

beam energy

Due to the nonlinear chirp different part of the
beam suffer different compressions and
wavelength shifts. As a results the spectrum of
the bunching has a broadening.
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w Different operating modes Fé'?y

Since the beginning of the commissioning of FEL-1 in 2010 several improvement of the
LINAC lead to changes of the electron beam parameters.

First experiments where done without the lineariser (x-band) and with 350 pC.

In a second period the charge has been increased to 450pC.

*Since may 2012 laser heater and x-band become available and have been used
toghether with a 500pC electron beam.

Every configuration has different effects on the beam that also affect the FEL.
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Both laser heater and X-band where not available from the beginning of the FEL
commissioning. Since current spike is not useful for HGHG, FEL operations started
with a slightly compressed beam.

Current profile has a ramped shape
and longitudinal phase space shows -
a linear chirp in the region useful for /
the seeding.

As a consequence of the ramped
current profile, the timing jitter
between the laser and the electron
beam converts into FEL power
fluctuations.
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The nice longitudinal phase space
allows a very good control of the FEL
bandwidth.
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gletira

Relative bandwidth of the FEL is smaller than the bandwidth of
the seed laser. In the frequency (energy) domain the FEL
spectrum is larger than the one of the seed laser.
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Since we expect the FEL pulse to be shorter than
the seed laser the spectrum broadening does not
necessary implies a degradation of the longitudinal
coherence of the FEL pulse.

Considering the pulse shortening predicted by
theory for the 8" harmonic we can estimate tat
FERMI FEL pulses are close to the Fourier limit
and have a good longitudinal coherence.
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el Wavelength stability TGS

- In addition to the very narrow spectrum
... FERMI is characterized by excellent
. —spectral stability. Both short and long
- term measurements show that the
pectral peak jitters of less than 1 part
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Reported data refer to an electron beam of FEL photon energy : 38.19eV
350pC at 1.24GeV compressed about a fluctuat!ons = 1.1meV (RMS)
factor 3. The 6 radiators are tuned to 32.5nm. fluctuations = 3e-5 (RMS)
FEL bandwidth = 22.5meV (RMS)
fluctuations =5.9e-4 (RMS)
fluctuations = 3% (RMS)
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w IRCreasing peakiCurrent @ezem

* To increase the FEL power we pushed to higher compression
factors and/or higher e-beam charge.

« Without x-band we are limited by the nonlinear compression
that mainly enhance the spike while the tail (used for
seeding) remain at relatively low current.

« With the increase of the charge density we started to see
effects of microbunching also on the FEL emission.
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das  E-beam microstructures in beam dump F@%'?y
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At high charge (500pC) and compression (CF>4) we often
see detailed microstructure in images of the electron
beam energy spectrum measured in the

Main Beam Dump (after the FEL). These structures may
suggest the presence of some microbunching
developing in the LINAC and spreader.

Since the seeding and FEL process are locally
modifying the electron beam phase space it is
possible to recognize the portion of the beam
that is contributing to the FEL.

In the reported case, representative of

RUN10, the FEL was typically optimized

seeding close to the spectrum peak.
Beam tail

Beam head

Local hole produced by
the seeding
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eletir FEL spectrum changes %?3'9
Beam head | m” O R— Beam tail
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At the usual working point the FEL has good 3
stability, high intensity and a clean spectrum. o
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More toward the head, the spectrum splits intwo §_|
with a new emission band that has a very ar b A
different wavelength (red shifted) and noisy. T ceedlaser delay (ps)
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eletir Needs for x-band and LH ity

* Results suggested that further improvement of
the FEL would necessarily require the x-band
and the laser heater.

* In may 2012 x-band become operational and
commissioning of LH and X-band started.

S. Spampinati
MOPD58

e
"N19D N . ;
SARA T emasezoz - Spectral characterization of the FERMI pulses in the presence of electron-beam phase-space modulations 16



With the X-band the electron beam can be efficiently -

compressed for HGHG operations with a good part
of the beam characterized by high current (~500A).

Typically we operate with in L1 at ~28° degree from
the crest (118° ) and the X-band at the negative crest 12«
(-90° ).
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Since some of the plants, including the x-band, suffer from . | )
small drifts the phase of the x-band may vary by some ¢ e X g
degrees and his final optimization is done with the FEL.fg;lz“* 1 [— N e
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Current profile is flat but with such a short pulse the |
electron beam has a significant nonlinear energy chirp. w1
Various compression configurations have been studied trying to reduce the chirp but at
the moment we are not able to completely remove it.

The design of FERMI included a ramped current profile at the injector in order to cure

such a non-linear phase space. G. Penco
WEPD20
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eletir e- phase-space effects on FEL F@%'?y

file name :/myData’spettri-RT-32.5nm_prove_19-Jun-12_L_001.dat
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By measuring the FEL spectra as a function of the seed
= ey ’ laser delay we can look at the effects of the e- beam
; ’:’”’“ R phase space into the FEL.
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eletir Statistical analysis F@E'?y

Wavelength = 31.38 nm

Photon energy = 39.58 eV

Lambda jitter = 0.04 nm
0.13 (%)

Bandwidth(rms) = 29 meV
7.3e-04

3 Bandwidth jitter = 0.013 (nm)
1500 57 (%)

a1
a
velength (nm) 315

I ,
To compare FEL spectra from this configuration with previous we analyze a long

sequence of spectra.

With respect to what obtained in the case without x-band the bandwidth is slightly larger
but more important wavelength fluctuations are a factor 20 larger.

Optimizing the FEL “specifically” for reducing the wavelength fluctuations allow us to
reduce this fluctuations to about 5e-4, still larger than in the past but is reasonable for
the users.

SERIE_spettri-RT-BUNGAP_1238_R56_62A_seed_65.1_LH_38.0_Xband_ON_24-Jun-12_M_001.mat
o2°N19
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elettr Statistical analysis TGS

. Wavelength = 31.38 nm
gl Photon energy = 39.58 eV
god T TR Lambda jitter = 0.04 nm
5. L 0.13 (%)
b Bandwidth(rms) = 29 meV
305 7.3e-04

Bandwidth jitter = 0.013 (nm)
57 (%)

To compare FEL 'spectrafrom this configuration with previous we analyze a long
sequence of spectra.

With respect to what obtained in the case without x-band the bandwidth is slightly larger
but more important wavelength fluctuations are a factor 20 larger.

Optimizing the FEL “specifically” for reducing the wavelength fluctuations allow us to
reduce this fluctuations to about 5e-4, still larger than in the past but is reasonable for
the users.

SERIE spettri-RT-BUNGAP_1238_R56_62A_seed_65.1_LH_38.0_Xband_ON_24-Jun-12_M_001.mat
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High compressions

In order to push for higher photon flux we increased the compression factor.

This, together with a good matching and alignment, leads to the first clear evidence of
SASE at FERMI.

SASE(*) operation mode has been used to optimize the FEL.

If not undulator are not properly optimize the SASE background(**) appear also in
HGHG configuration.
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eletir Wavelength stability "@'5:'?3'97

With this configuration during users operations we have Wavelength= 35.4 nm
provided about 200 pJ. With proper optimization both the ~ Photon energy= 35.0ev
bandwidth and the wavelength are kept under control Lambda jitter = 0.016 nm
0.046 (%)
Bandwidth(rms) = 0.022 (nm)
22.0 meV
6.2e-04
Bandwidth jitter = 0.0065 (nhm)
29 (%)

Studies on the possibility to further improve
_wavelength stability and bandwidth are ongoing.
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eletir Conclusions %?3'9

« Spectral measurements at FERMI show very good longitudinal
coherence.

« Effects of electron beam phase space on the HGHG process
have been studied at FERMI

* The use of x-band and laser heater allow us to reach with FEL-

1 few hundreds of uJ in the 65-20 nm spectral range

— Spectrum control operating FEL with such highly compressed beams is more critical.

— Further studies on the optimal LINAC setting for high power and high spectral quality are
ongoing.
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Correlation between wavelength and FEijr

@m bandwidth and distributions =

Ted wasvelengm nim)

o -..;: ot | By plotting the central wavelength as
3138 W Bafansn . a function of the bandwidth we find
o e .:.:_"'.' :-1: strong correlations. This suggests that
SIS T fluctuations are related to electron
.37 . e Y beam phase space and timing jitter.
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FEL bandwidth has an asymmetric distribution £ 100 £ 12y
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Gaussian single mode spectra F@E'?ipr

nse T . . . .
MR In this configuration the FEL spectra are well fitted
: Gaussian Fit 7] . . .
07 | with a single Gaussian curve except a very small
ERE 1 discrepancy toward the red.
2 05
E 04 b . .
03 | Spectra have been cross-calibrated using He
02 1 absorption*. Appr [nm]
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Figure 10. Reconstructed He absorption profile (red dots: PMT response vs
calibrated wavelength; black line: gaussian fit), and comparison with Padres
(*) LDM team spectrometer trace (blue line). Note Argr, = Asgep/5.
uly-December 2011
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M?D 40nm,
RAD \
' m
Electron bunch _/ A
R56 to e-beam dump

Highly compressed beam with 6 undulators tuned at ~40nm in circular polarization

FEL pulse
MQD 40nm,
RAD \
Y
,——-"""_-_-P
ectron bunch A
R56 to e-beam dump

SASE signal is strongly enhanced by using the optical klystron configuration, with

modulator tuned at the same wavelength and small dlseersmn in R56.
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