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© Seeding setup (at mm wavelength using an external laser)
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Microbunching instability in storage rings
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o If charge density > density threshold,
interaction between the electron bunch and

= microbunching instability

@ Appearance of microstructures
(at millimeter scale)
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Microbunching instability in storage rings

Experimental observation : emission of CSR at THz frequencies
(bolometer signals : UVSOR-II, low-alpha & single bunch mode)
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Storage-ring microbunching instability
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Modeling

Vlasov-Fokker-Planck (1D) equation

of _of  of

2% —pa—q — qa—p = rotation in phase space O(kHz)

+ 2E£ pf + i = damping + diffusion O(ms)
op op

+ICEWf€()i = wakefield
op

4

[Venturini and Warnock, Phys. Rev. Lett. 89, 224802 (2002)]

f(q, p,0) : normalized electron distribution

g : longitudinal position (in units of r.m.s. bunch length at equilibrium)
p : relative energy (in units of relative energy spread at equilibrium)

0 : time (dimensionless, 2 = one synchrotron period)

E,r(q) : electron moving on a
circular orbit in the midplane
between two parallel plates of

infinite conductivity.
[Murphy et al, Part. Acc. (1997)]
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Storage-ring microbunching instability
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Phase space versus time (numerical)

Numerical result : evolution of the electron distribution
(Vlasov-Fokker-Planck model + shielded CSR wakefield, UVSOR-II, low-alpha mode)

o Below microbunching @ Around microbunching
instability threshold, | = 3mA instability threshold, | = 5mA

(>]

= The structure has a characteristic wavenumber
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Principle of seeding : initial bunching using an external laser
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Seeding setup (at mm wavelength using an external laser)
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Principle of seeding : initial bunching using an external laser
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Motivation : previous results in conditions of slicing

[Byrd et al, Phys. Rev. Lett. 97, 074802 (2006)]

"Laser Seeding of the Storage-Ring Microbunching Instability for High-Power Coherent Terahertz
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Seeding setup (at mm wavelength using an external laser)
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Setup for the production of modulated laser pulses

Chirped pulse beating

[Weling and Auston, JOSA B 13, 2783 (1996)]
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Global view of the experimental setup

Storage ring

THz radiation
analysis
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& pulse pulse
shaper analysis
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@ UVSOR-II, normal alpha and single bunch mode.

o Energy 600 Mev, relative energy spread =~ 3.4 x 10™* and rms bunch
lenght ~ 3 cm.

@ Beam current below the microbunching instability threshold.
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Tests without microbunching instability : effective bunching at mm scale

Experiments at UVSOR :

@ [Evain et al, Phys. Rev. STAB 13, 090703 (2010)]
@ [Bielawski et al, Nature Phys. 4, 390 (2008)]
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= Observation of narrowband THz emission in a bending magnet
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Seeding results below and above microbunching instability
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Zoom of bolometer signal versus excitation wavenumber

response at
half synchrotron
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Zoom of bolometer signal versus excitation wavenumber
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Results of seeding at UVSOR-II
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Numerical result : CSR versus time

For a beam current | = 3.5 mA :
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@ Beamline cutoff : 0 cm™®

@ Bolometer time response : 2 us
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Typical simulated bolometer signal for an excitation at 1.5 cm™!
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Longitudinal phase space for an excitation at 1.5 cm™!

e without wakefield @ with shielded CSR wakefield
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Resonance curve
@ Maximum value of the delayed @ Numerical average spectrum of
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o Experimental and numerical resonance wavenumber : 1.6 cm™

@ Response at half synchrotron period :
resonance curve at the characteristic wavenumbers of the system.



Conclusion

Experimental results
e Seeding of the microbunching instability with modulated laser pulses.

@ Resonance curve at the characteristic wavenumber of the microbunching
instability.

Numerical analysis

@ Some agreements with a simple 1D model (VFP + shielded CSR
wakefield), e.g., the resonance wavenumber, the response at half
synchrotron period

o Differences in the amplitude of the responses, e.g., ratio
immediate/delayed response

Next steps

o Improvement of wakefield models. [Agoh and Yokoya, Phys. Rev. STAB 7, 054403
(2004)] [Stupakov and Kotelnikov, Phys. Rev. STAB 12, 104401 (2009)]

o Taking into account the transverse aspect and other experimental aspects,
e.g., the beamline response.
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Experimental spectra
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o Detected wavenumber at half synchrotron period is 2 times larger than

initial excitation.

o Do we detect the harmonic of the modulation??



Temporal spectra (numerical) for an excitation at 1.5 cm™!

without wakefield (I=0mA) with shielded CSR wakefield (I=3.5mA)
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