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Abstract

The stability of an ion beam in synchrotrons with dig-
ital filters in the feedback loop of a transverse damper is
treated. Solving the characteristic equation allows to cal-
culate the achievable damping rates as a function of in-
stability growth rate, feedback gain and parameters of the
signal processing. A transverse feedback system (TFS)
is required in synchrotrons to stabilize the high intensity
ion beams against transverse instabilities and to damp the
beam injection errors. The TFS damper kicker (DK) cor-
rects the transverse momentum of a bunch in proportion
to its displacement from the closed orbit at the location of
the beam position monitor (BPM). The digital signal pro-
cessing unit in the feedback loop between BPM and DK
ensures a condition to achieve optimal damping. Trans-
verse Feedback Systems commonly use digital FIR (finite
impulse response) and IIR (infinite impulse response) fil-
ters for the signal processing. A notch filter is required to
remove the closed orbit content of the signal and correct
for the imperfect electric centre of the BPM. Further pro-
cessing is required to adjust for the betatron phase advance
between the beam pick-up (BPM) and the damper kicker
(DK). Damping rates of the feedback systems with digital
notch, Hilbert and all-pass filters are analysed in compari-
son with those in an ideal feedback system.

INTRODUCTION

Heavy ion beams of a high quality are required by many
physicists for experimental studies. Gold ion beams are ac-
celerated now in RHIC (BNL) [1], it is planed to accelerate
lead ions in LHC [2]. Future accelerator facilities at GSI
(FAIR project [3]) and JINR (NICA project [4]) are de-
signed for acceleration of uranium beams. These facilities
include a linear accelerator and several synchrotrons. For
example, the CERN accelerator chain for ion beams con-
sists of Linac – LEIR – PS – SPS – LHC. In the framework
of the FAIR project the existing GSI accelerators serve as
injectors for new synchrotrons SIS100 and SIS300. It is
planned to build a booster as the injector for the Nuclotron
operated now with a linac at JINR and to use the Nuclotron
as the injector for a collider designed in the framework of
the NICA project. It is clear that injection errors during the
beam path from the linac to synchrotrons can lead to the
undesirable growth of a beam emittance. It should be em-
phasised also that high intensity beams will be provided by
these accelerators. The ultimate intensities after injection
into the LHC will be about 4.8 · 1010 ions for the 208Pb82+

beam with an energy of 177 GeV/u. The peak intensities
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of particles after injection into the SIS100 will be about
5 ·1011 for the 238U28+ beam with an energy of 0.2 GeV/u.
These intensities can lead to coherent transverse instabil-
ities. Theoretical predictions for the instability rise time
τinst correspond to hundreds revolution periods T rev of par-
ticles in the synchrotron. Therefore it is necessary to cure
the transverse instabilities as well as to damp the transverse
oscillations of the beam due to injection errors.

Transverse feedback systems (TFS) are used widely in
synchrotrons for damping of coherent oscillations. The
damping time τd of TFS must be shorter the instability rise
time τinst to suppress instability: τd < τinst. In addition
to that the damping time must be chosen to limit the emit-
tance growth due to the beam injection errors. If e inj is the
maximum assumed amplitude of a beam deviation from the
closed orbit due to displacement and angular errors at in-
jection, then the relative emittance growth Δε/ε is [5, 6]:

Δε
ε

=
e2inj

2σ2
F 2
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(

1 +
τdec

τd
− τdec

τinst

)−1

, (1)

where σ is the initial RMS beam size and τdec is the beam
decoherence time. Dependencies of the form factor F a on
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Figure 1: Dependencies of Fa on τinst/Trev.

the instability rise time τinst for several values of the damp-
ing time τd and the beam decoherence time τdec are shown
in Fig. 1. As rule Fa < 0.1 is assumed that corresponds to
τd ≈ 40Trev for τinst > 100Trev and τdec > 500Trev. The
damping time τd = 40Trev is used commonly as the design
specification of TFS for synchrotrons [7, 8].

BASIC DESCRIPTION

A classical transverse feedback system (see Fig. 2) con-
sists of a beam position monitor (BPM), a damper kicker
(DK) and an electronic feedback path with appropriate sig-
nal transmission from the BPM to the DK [9]. The damper
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kicker corrects the transverse momentum of a bunch in pro-
portion to its displacement x[n, sP] from the closed orbit at
the BPM location sP of the synchrotron’s circumferenceC0

at the n-th turn. The digital signal processing ensures the

DSP

DK

BPM�delay

Beam

Figure 2: Layout of a classical transverse feedback system.

adjustment of the phase advance and the correction of the
time of flight for optimum damping. The total delay τdelay

in the signal processing of the feedback loop from BPM to
DK is adjusted to be equal to τPK, the particle flight of time
from BPM to DK, plus an additional delay of q turns:

τdelay = τPK + qTrev . (2)

For the practical realization in a particle accelerator, we
note that q = 0 or q = 1 are used [8].

Following the matrix description of the free oscillation
of a particle in synchrotrons, the matrix equation for the
bunch states at the BPM location sP at the (n+ 1) and n-th
turns after a small kick by the DK is given by [10]

X̂ [n+ 1, sP] = X̂ [n, sP + C0]

= M̂0X̂[n, sP] + B̂T̂ΔX̂[n, sK], (3)

where elements of the column matrix X̂[n, s] are the bunch
displacement x[n, s] and the angle x′[n.s] of its trajectory,
M̂0 is the revolution matrix, B̂ is an ordinary transfer ma-
trix from the point [n, sK] on the closed orbit at the DK
location to the point [n, sP +C0] at the BPM position at the
n-th turn, T̂ is the 2 × 2 matrix in which T21 = 1 and the
other elements are zero. The first element of the column
matrix ΔX̂ in Eq. (3) is equal to the kick value Δx ′

Δx′[n, sK] = SKVout[n] , (4)

where SK is the transfer characteristic of the damper kicker.
The second element of the column matrix ΔX̂ can be an
arbitrary value due to the form of the matrix T̂ . The output
voltage Vout[n] of the feedback loop depends on the input
voltage Vin[n, sP] at the BPM. In the general case of linear
systems the output voltage can be written as follows:

Vout[n] = u[n− q]
n−q∑

m=−∞
h[n−m]Vin[m, sP] , (5)

where elements h[m] are determined by the electronics in
the feedback loop, u[n] is the Heaviside step function and
q corresponds to the number of turns for delay (see Eq.(2)).
For a bunch injected at n = 0, the input voltage V in[n, sPi]
depends on the bunch displacement at the BPM location:

Vin[n, sP] = SPu[n] (x[n, sP] + δx) , (6)

where SP is the BPM sensitivity and δx is a deviation of
the BPM electric centre from a closed orbit. It should be
emphasised that equations (3), (4), (5) and (6) correspond
to the bunch-by-bunch feedback where the correction kick
for a given bunch is computed based only on the motion of
that bunch. Applying the bilateral Z-transform (see [11])

y(z) =
∞∑

n=−∞
y[n]z−n

in equations (3), (4), (5) and (6) we obtain from (3):

X̂(z) =
zÎ − M̂−1 det M̂

det(zÎ − M̂)

⎛
⎝z

(
x[0, sP]
x′[0, sP]

)

+
z−qK(z)√

β̂Pβ̂K

B̂T̂

(
δx/(1 − z−1)

0

)⎞
⎠ , (7)

where Î is the identity matrix, the matrix M̂(z) is given by

M̂(z) = M̂0 +
z−qK(z)√

β̂Pβ̂K

B̂T̂ , (8)

the betatron amplitude function at the point s P of the syn-
chrotron’s circumference is β̂P = β̂(sP), and β̂K = β̂(sK).
The transfer function K(z) is determined by the system
transfer function H(z) of the electronics in the feedback
loop in accordance with parameters h[n] in (5):

K(z) =
√
β̂Pβ̂KSPSKH(z) ,

H(z) =
∞∑

n=−∞
z−nh[n] . (9)

Consequently the bunch dynamics is determined by the
poles zk of X̂(z) which are roots of the characteristic equa-
tion:

det
(
zkÎ − M̂(zk)

)
= z2

k−2zk Tr M̂(zk)+det M̂(zk)

= z2
k −

[
2 cos(2πQ̃) + z−q

k K(zk) sin(2πQ̃− ψPK)
]
zk

+ 1 − z−q
k K(zk) sinψPK = 0 , (10)

where Q̃ is the beam tune, ψPK is the betatron oscillation
phase advance from BPM to DK.

In the general case, Q̃ is a complex function depending
on z [12, 13]. The real part of Q̃ is the number of betatron
oscillations per turn: Re Q̃ = Q. The imaginary part of
Q̃ is determined by the increment of the transverse insta-
bility: 2π Im Q̃ = Trev/τinst, where τinst is the transverse
instability rise time.

The beam is stable if eigenvalues zk from Eq.(10) lie
inside the unit circle:

|zk| < 1. (11)
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Damping rates of the coherent betatron oscillations are de-
fined by the absolute value of zk:

Trev

τk
= − ln |zk| , (12)

where τk is the time constant of the betatron oscillation am-
plitude decay. Fractional parts {Re Q̃k} of the betatron fre-
quency of a particle in presence of the transverse feedback
system

{Re Q̃k} =
1
2π

arg(zk) (13)

are the fractional tunes (−0.5 < {Re Q̃k} ≤ 0.5).
If |K(z)| = 0 then the solution of the Eq.(10)

z
(0)
± = exp(±j2πQ̃) (14)

corresponds to the solution for frequencies of the betatron
motion equation of a particle in synchrotrons. Let us as-
sume that for small values of |K(z)| we can write:

z−qK(z) = g exp(∓jϕ) exp(∓j2πqQ̃) , (15)

where the gain |g| � 1 and the phase shift

ϕ = arg
(
H(z(0)

− )
)

(16)

of the feedback loop depend weakly on z, so that we can
neglect dependences of g and ϕ on z in Eq.(10), and zero
approximation from (14) can be used for g and ϕ at beta-
tron frequencies. Let us assume also that the fractional part
of the tune is not close to 0 or 0.5. In this case the solu-
tions of Eq.(10) in the linear approximation with |g| � 1
are expressed by the formula:

z± ≈
(
1 − g

2
exp(±j(π

2
− Ψ̃PK))

)
exp(±j2πQ̃) , (17)

where

Ψ̃PK = ψPK +2πqQ̃+arg
(
H(z = exp(−j2πQ̃))

)
. (18)

Using definitions (12) and (13) the damping rates follow as

Trev

τ±
≈ g exp(± Im Ψ̃PK)

2
sin(Re Ψ̃PK) ± 2π Im Q̃ , (19)

and the fractional parts of tunes are:

{Re Q̃±} ≈ ±{Q}

∓ g exp(± Im Ψ̃PK)
4π

cos(Re Ψ̃PK). (20)

Therefore the best damping of coherent transverse oscil-
lations is achieved by optimally choosing the positions of
BPM and DK yielding a phase advance of Re Ψ̃PK equal to
an odd multiple of π/2:

Re Ψ̃PK =
π

2
(2k + 1), (21)

where k is an integer. Hence the overall damping rate is:

Trev

τ
≈ g exp(− Im Ψ̃PK)

2
cos(πk) − 2π Im Q̃

=
Trev

τd
− Trev

τinst
,

where τd is the damping time constant of the TFS without
instability.

In the following transverse feedback systems satisfying
the optimal conditions (2) and (21) are considered. We call
the special case with ϕ = 0 and q = 0 hereafter the ideal
transverse feedback system.

If Q̃ depends weakly on z then the characteristic equa-
tion (10) with the feedback transfer function

z−qK(z) = ga0z
−qH(z)

can be converted to a polynomial. It can be solved with the
use of a root-finding algorithm or analytically for a poly-
nomial of degree less than five. However, it is clear from
(20) that {Re Q̃k} ≈ {Q} for |g| � 1 in the case of (21).
Therefore dependences of damping rates |zk| on gain g for
the TFS with digital filters can be compared with those for
the ideal TFS if a0 is defined for zQ = exp(−j2πQ) such
that

|a0z
−q
Q H(zQ)| = 1,

a0 sin
(
arg

(
z−q

Q H(zQ)
)

+ ReψPK

)
> 0.

(22)

Hence the damping regime corresponds to g > 0. The
calibration condition (22) will be used hereafter for all de-
pendences of TFS damping parameters on gain g.

DIGITAL FEEDBACK SYSTEMS

Taking into account the final value theorem [11] and the
solution (7) for X̃(z) we can conclude that

X̂ [∞, sP] = lim
z→1

(1 − z−1)X̃(z) = 0

if K(z = 1) = 0 . (23)

Therefore as minimum a notch filter to suppress all the rev-
olution harmonics (DC included) is required in the feed-
back loop. The magnitude of the difference signal from the
BPM electrodes, after passing through the notch filter, is
proportional to the bunch deviation from the closed orbit.
The system transfer function of the notch filter is [11]:

H(z) = HNF(z) = 1 − z−1. (24)

It is clear from (24) that the notch filter changes the gain
g and the phase ϕ of the open loop transfer characteristics.
For example, if Q = 6.73 then {Q} = −0.27 and in ac-
cordance with (16) the phase ϕ is arg(HNF(zQ)) = ϕNF =
41.4◦. The gain |HNF| = 2| sin({Q}π)| = 1.5 can be ad-
justed by an amplifier a0 in the feedback loop in accor-
dance with (22). However, according to the approxima-
tion formula (19), the damping rates for the TFS with the
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notch filter still change due to the phase shift ϕNF resulting
in slower damping than for the case of the ideal TFS.

The unwanted phase-shift ϕNF due to the notch filter can
be compensated by a Hilbert filter [14] with the system
transfer function

HHF(z) = h0z
−3 +h1z

−2(1− z−2)+h3(1− z−6) , (25)

where

h0 = cos(Δϕ), h1 = − 2
π

sin(Δϕ), h3 = − 2
3π

sin(Δϕ)

are the Hilbert transform impulse response coefficients.
The electric circuit of a feedback loop with the notch and

Hilbert filters is shown in Fig. 3. The difference signal V in

�dd
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Figure 3: Block diagram of feedback loop with the notch
and Hilbert filters.

from the electrodes of the beam position monitor (BPM) is
amplified by front electronics with the gain g in. Then the
signal proceeds through the notch filter and the Hilbert fil-
ter. The synchronisation needed is adjusted by the digital
delay τdd. The output voltage Vout on the damper kicker
(DK) is supplied by the high power amplifier with the gain
gout. The notch filter has the standard configuration. It in-
cludes a one turn delay Trev, an invertor and a summator.
The Hilbert filter includes six one turn delays, four sum-
mators, two inverting amplifiers and three amplifiers h0,
h1, h3. For example, the phase shift needed for compensa-
tion of ϕNF = 41.4◦ is obtained by using the Hilbert filter
with Δϕ = −72.8◦.

The unwanted phase-shift ϕNF due to the notch filter
can be compensated also by an all-pass filter [11] with a
frequency-response magnitude that is constant but a phase
advance which is variable and adjustable. The notch and
Hilbert filters are FIR (finite impulse response) filters but
the all-pass filter is IIR (infinite impulse response) filter.
The transfer function of the first order an all-pass filter is

HAF(z) =
z−1 − a∗

1 − az−1
, (26)

where a is a free filter parameter for the adjustment of the
phase, and a∗ denotes its complex conjugate. For example,
the phase shift needed for compensation of ϕNF = 41.4◦ is
obtained by using the all-phase filter with a = −0.501.

The electric circuit of a feedback loop with the notch
and all-pass filters is shown in Fig. 4. The all-pass fil-
ter includes a one turn delay Trev, an inverting amplifier

(−1/a∗) in the non-recursive electric circuit, an amplifier
a in the recursive electric circuit and two summators. An
additional inverting amplifier (−a∗) in the output electric
circuit is ensuring |HAF| = 1 for all frequencies indepen-
dently on the filter parameter a. It allows to adjust phase
shifts in the feedback loop by varying the parameter a but
keeping the gain of the TFS constant.

-a*

- a1/ *a

�dd

Trev

-1

Trev

BPM DK

gin gout

Notch Filter All-pass Filter

� ��

Figure 4: Block diagram of feedback loop with the notch
and all-pass filters.

Dependences of damping rates |zk| on gain g for the
ideal TFS, the TFS with notch and the TFS with notch and
all-pass filters are shown in Fig. 5 (the tune of Q = 6.73
was used [15]). In case of the feedback loop with a notch

gGain, 
0.0 0.2 0.4 0.6 0.8 1.0

| kz|

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Dependences of damping rates |zk| on gain g for
the ideal TFS (solid curves), for the TFS with the notch fil-
ter (dashed curves) and for the TFS with the notch and all-
pass filters (dotted curves), parameter a = −0.501; shown
is the case of the tune of Q = 6.73 and an assumed insta-
bility rise time of τinst = 100Trev.

filter only the Eq.(10) is a characteristic polynomial of the
third degree. The characteristic equation (10) is a char-
acteristic polynomial of the fourth degree in case of TFS
with notch and all-pass filters. Therefore all dependences
in Fig. 5 correspond to analytical solutions of Eq.(10). It
is clear from Fig. 5 that the damping rates of the TFS with
the notch filter are worse than the damping rates of the ideal
TFS for all magnitudes of the feedback gains. However, for
small gains g � 1 the characteristics of the TFS with the
notch and all-pass filters coincide with the corresponding
parameters of the ideal transverse feedback system if the
phase shift of the notch filter was compensated by the all-
pass filter with the parameter a = −0.501.
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Dependences of overall damping rates T rev/τ on gain
g for the ideal TFS and for feedback systems with digi-
tal notch, all-pass and Hilbert filters are shown in Fig. 6
in cases of optimal values for a and Δϕ. Therefore the

gGain, 
-210 -110

τ
 /

re
v

T

-210

-110

Figure 6: Dependences of overall damping rates T rev/τ
on gain g for feedbacks: the ideal TFS (solid curve), with
the notch filter (dashed curve), with the notch and all-
pass filters for a = −0.501 (dotted curve), with the notch
and Hilbert filters for Δϕ = −72.8◦ (dash-dotted curve);
shown is the case of the tune of Q = 6.73 and an assumed
instability rise time of τinst = 100Trev.

damping parameters of the ideal TFS can be obtained in
the TFS with notch and all-pass or Hilbert filters for small
gains. However the stability range is wider for TFS with
the notch and all-pass filters. The gain g of TFS with the
notch filter only must be in ≈1.3 times higher in the case of
τd = 40Trev than for TFS with the all-pass or Hilbert filter.

CONCLUSION

Following the analysis presented in this paper we can
conclude that for small gains of the feedback loop the op-
timum damping characteristics of the ideal TFS can be re-
stored in presence of a notch filter using a first order all-
pass filter or a six order Hilbert filter with optimised pa-
rameters. Tuning the phase transfer characteristic of the
all-pass or Hilbert filters in order to compensate the phase
shift in the feedback loop caused by the notch filter we can
obtain the optimal beam damping time. This possibility of
tuning is an interesting feature and constitutes an advantage
over a transverse damping system with a notch filter only.
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