Laser accelerated ions and their potential for therapy accelerators I. Hofmann, GSI Accelerator Department HIAT09, Venezia, June 8-12, 2009 - 1. Introduction to p driver parameters - 2. Proton therapy accelerators - 3. Beam quality source-collimation-accelerator - PHELIX-GSI experiment - scaling laws - 4. Impact on accelerator scenarios - 5. preliminary conclusions co-workers: A. Orzhekhovskaya and S. Yaramyshev (GSI) M. Roth (TU Darmstadt), M. Droba (U Frankfurt) ## 1. Introduction to p driver parameters What are lasers competing with? **SNS Accelerator Complex** ### Injector Chain: New Proton Linac for FAIR at GSI #### Crossed-bar H-Structure | Beam Energy
Beam Current
Protons / Pulse | 70 MeV
70 mA
7·10 ¹² | |--|---------------------------------------| | Pulse Length | 36 µs | | Repetition Rate Rf Frequency | 4 Hz
352 MHz | (Univ. Frankfurt U. Ratzinger) ### **Heidelberg Ion Therapy Facility** (HIT - accelerator built by GSI, fully operational end of 2009) ## **Summary on Proton Drivers** What can conventional proton accelerators achieve? (some examples) MeV p/sec p/ spill or micropulse SNS Oakridge (Spallation Neutron Source): 1000 6x10¹⁵ 2x10⁹/10ns FAIR p driver linac (\rightarrow antiproton facility): 70 ~ 10¹³ 2x10⁹/10ns Proton therapy (typical): $\sim 250 \sim 10^{10} \sim 5x10^{10} / 10s \text{ spill}$ $\sim 5x10^7 / \text{voxel } (100 \text{ Hz})$ → Laser p/ion acceleration may be competitive in the area of therapy SNS FAIR HIT 5 Hz PW laser system beam power: 1 MW 100 W 0.2 W 150 W (in photons) → efficiency of "photons into usable protons/ions" crucial !! (example: in GSI-PHELIX experiment ~ 3x10⁻⁵) ### 2. Proton/Ion Therapy Accelerators two (theoretical) options: laser + post accelerator - laser to full energy A. Laser acceleration replacing "injector linac" + conventional post-accelerator (linac/circular) B. Full laser acceleration → p directly to 250 MeV or C to 350 MeV → transferred to patient ## **Summary on issues in proton therapy** following Linz & Alonso PRSTAB10, 094801 (2007): Conventional Laser Accelerator (Cyclotron, Linac+Synchrotron) 1. Beam Energy 200 – 250 MeV in theory possible 2. Energy variability "+" in synchrotron ? demanding 3. $\Delta E/E$ ~ 0.1% ? demanding 4. Intensity $10^{10} / \text{sec}$ $10^{9} / 10^{8} \text{ at } 10 / 100 \text{ Hz}$ 5. Precision for scanning "+" in synchrotrons ? large $\Delta p/p$ Linz & Alonso didn't quantify their highly critical arguments against laser acceleration! ## 3. Beam quality source-collimation-accelerator - The production phase space is extremely small consequence of small μm size focal spot and <ps time duration often "sold" as attractive feature of laser acceleration - 2. Can we take advantage of the extremely small production phase space? - 3. No, it won't survive collection and following transport! - "Single particle" effects degrading quality: chromatic aberration (second order effect): $\delta x \sim x' \delta p/p$ #### yet unexplored and open issues: #### "Collective effects": proton + neutralizing electron space charge at source under study (separation of p and e⁻ by solenoid B field) proton beam space charge further downstream - appears controllable ("geometric" aberration by nonuniform space charge) ## GSI-PHELIX Experiment (K. Witte et al., M. Roth et al.) used as reference case here #### In 2008 demonstrated first time: - 170 TW power - 700 fs pulse length (120 J) - novel copper focusing parabola - spot size 12 X 17 µm (FWH - Intensity: ~ 4 x 10¹⁹ W/cm² #### **EXPERIMENT:** Laser Ion Acceleration (TUD - GSI) #### Goal: Collimate an intense, laser generated proton beam using a pulsed solenoid magnet → transfer to conventional accelerator optics ## Results of the first PHELIX experiment on laser proton acceleration Setup to test proton production - Excellent laser beam quality - Ion energy comparable with other systems - Ion number as calculated - All on the very first shot!! (further optimization pending) ## Chromatic effect blows up integrated emittance from bunch head to tail – common collimation problem solenoid focusing: Δf/f ~ 2 Δp/p #### 10 MeV protons produced at 20° opening cone - modeled ΔE/E = +/-0.04 by beams of 9.6 ... 10.4 MeV to describe chromatic effective emittance ~ x´_{ini} Δp/p - much enlarged "effective spot" - initial emittance < 1 mm mrad replaced by "effective emittance" 240 mm mrad # Detailed tracking simulation with DYNAMION* code (quadrupole channel) - reduced cone angle from 22° to 2.5° - confirms chromatic effect - shows also nonparaxial effect * S. Yaramishev et. al. ## DYNAMION: comparison for quadrupole and solenoid collimators / cone angle of 2.50 "real" solenoid field #### solenoid - requires large field of 16 T - symmetric focusing avoids large excursions as in quadrupoles - larger distance source-solenoid reduces field, but increases chromatic effect → approaching quadrupole ## Combined chromatic and space charge effects production cone angle 5° (86 mrad) $\Delta E/E = +/-0.04$ extrapolate to 10° at 30 mA $\rightarrow \varepsilon \sim 40 \pi$ mm mrad with 2x10° p (reference bunch) ## Applied to synchrotron injection at 10 MeV reference p bunch: $2x10^9$ p Δ E/E=+/- 0.04 from cone +/- 10° \rightarrow ε ~40 π mm mrad $\delta p/p$ ~0.004 → match well with space charge limit in ring !! repeat 25 times bunch into bucket of 10 MHz (~70 kV) 10→250 MeV next at GSI (2009/10): we plan experiment with single bunch and 2 m drift + 108 MHz bunch rotator → diagnose 3D phase space + efficiency to verify our modeling ## Parameters: laser injector - full laser scenario 250 MeV Laser: | lon | N _{bunch} | N _{ring} | $\Delta Q_{ m inc}$ (space charge) | h | $\epsilon_{ ext{final}}$ π mm mrad (estimated) | δp/p _{final} (estimated) | | | |-----------------|--------------------|--|------------------------------------|----|--|--|---------------|---------------------------------| | р | 2x10 ⁹ | 5x10 ¹⁰ | 0.1
(1 s!!!) | 25 | ~10
assume
10° cone | ~0.001 | ~10 Hz
~PW | 5Hz / 30J
30 fs
on market | | C ₆₊ | 6x10 ⁸ | 1.5x10 ¹⁰ every 10 s | 0.1 | | | | ~10 Hz
~PW | | | full laser: | N _{batch} | N _{fraction} | | | | | | | | р | 5x10 ⁷ | 5x10 ¹⁰ for 3D scanning in 10 s | | | <10 ?
assume
2.5° cone | <0.001? linac bunch rotator: ~ 2-5 m length | 100 Hz | >PW? | ### Conclusions - As of today laser acceleration has a <u>theoretical</u> potential to compete with conventional drivers for therapy - extremely high initial beam quality lost after collector → small "usable" fraction of total particle yield (PHELIX: "use" 3x10⁻³ of proton and 3x10⁻⁵ of photon yield) - "laser injector" into synchrotron - should be ok (based on PHELIX data) - 10 Hz Petawatt laser in reach - hard to compete with linac technology !! - "full energy laser" scenario lacks data - small cones (~2-3°), smaller production $\Delta E/E$ (100% \rightarrow 10-20%) - >100 Hz laser systems, nm foils (problems?) - reproducibility, precision unknown - New accelerator technologies take time!!