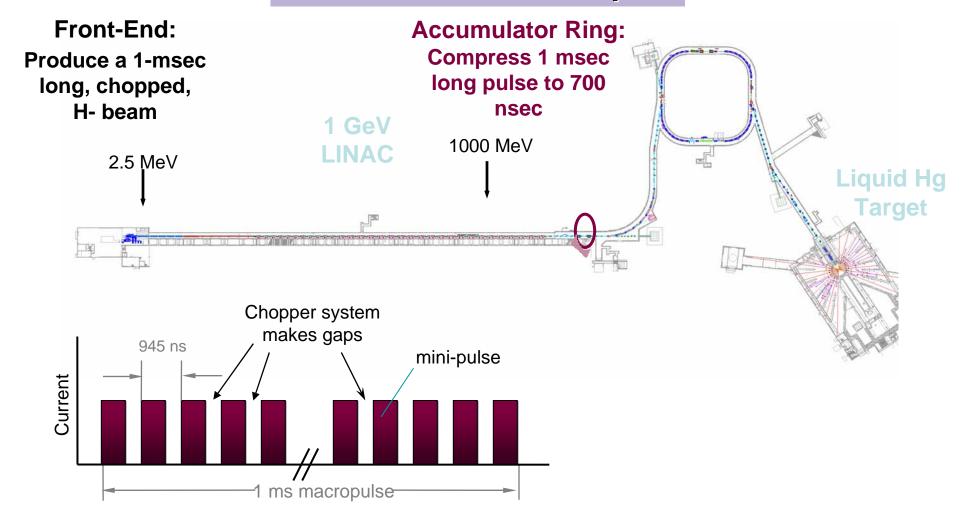
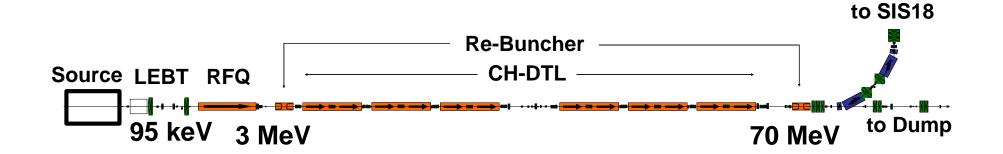
Laser accelerated ions and their potential for therapy accelerators

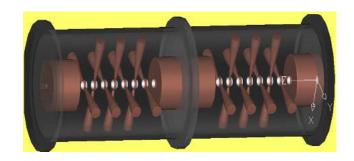
I. Hofmann, GSI Accelerator Department HIAT09, Venezia, June 8-12, 2009

- 1. Introduction to p driver parameters
- 2. Proton therapy accelerators
- 3. Beam quality source-collimation-accelerator
 - PHELIX-GSI experiment
 - scaling laws
- 4. Impact on accelerator scenarios
- 5. preliminary conclusions


co-workers: A. Orzhekhovskaya and S. Yaramyshev (GSI) M. Roth (TU Darmstadt), M. Droba (U Frankfurt)

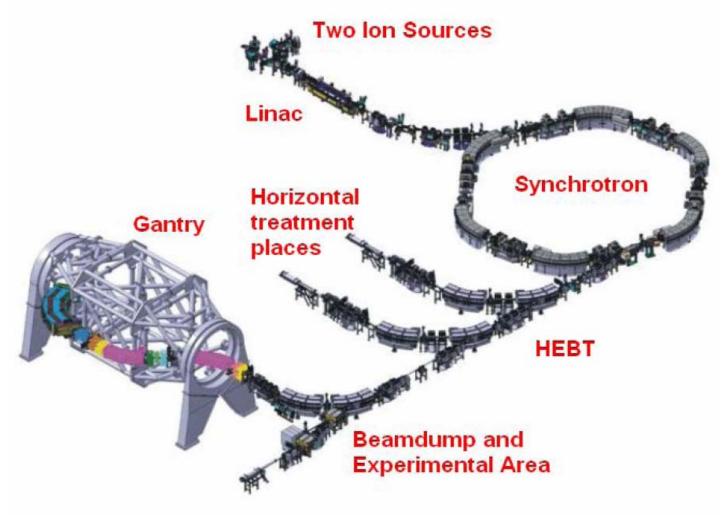

1. Introduction to p driver parameters

What are lasers competing with?


SNS Accelerator Complex

Injector Chain: New Proton Linac for FAIR at GSI

Crossed-bar H-Structure


Beam Energy Beam Current Protons / Pulse	70 MeV 70 mA 7·10 ¹²
Pulse Length	36 µs
Repetition Rate Rf Frequency	4 Hz 352 MHz

(Univ. Frankfurt U. Ratzinger)

Heidelberg Ion Therapy Facility

(HIT - accelerator built by GSI, fully operational end of 2009)

Summary on Proton Drivers

What can conventional proton accelerators achieve? (some examples)

MeV p/sec p/ spill or micropulse

SNS Oakridge (Spallation Neutron Source): 1000 6x10¹⁵ 2x10⁹/10ns

FAIR p driver linac (\rightarrow antiproton facility): 70 ~ 10¹³ 2x10⁹/10ns

Proton therapy (typical): $\sim 250 \sim 10^{10} \sim 5x10^{10} / 10s \text{ spill}$

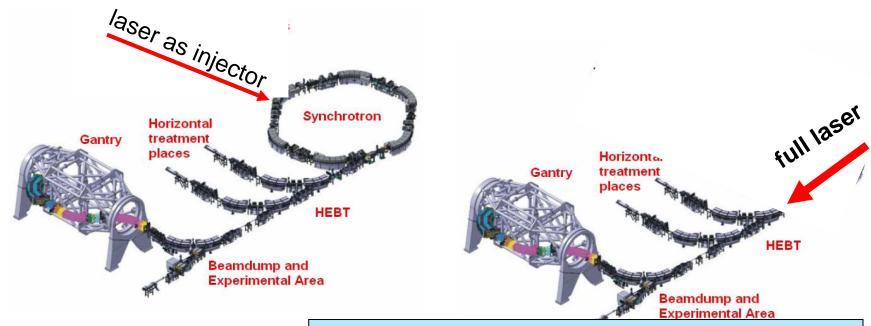
 $\sim 5x10^7 / \text{voxel } (100 \text{ Hz})$

→ Laser p/ion acceleration may be competitive in the area of therapy

SNS FAIR HIT 5 Hz PW laser system

beam power: 1 MW 100 W 0.2 W 150 W (in photons)

→ efficiency of "photons into usable protons/ions" crucial !! (example: in GSI-PHELIX experiment ~ 3x10⁻⁵)



2. Proton/Ion Therapy Accelerators

two (theoretical) options:

laser + post accelerator - laser to full energy

A. Laser acceleration replacing "injector linac" + conventional post-accelerator (linac/circular)

B. Full laser acceleration → p directly to 250 MeV or C to 350 MeV → transferred to patient

Summary on issues in proton therapy following Linz & Alonso PRSTAB10, 094801 (2007):

Conventional

Laser Accelerator

(Cyclotron, Linac+Synchrotron)

1. Beam Energy 200 – 250 MeV in theory possible

2. Energy variability "+" in synchrotron ? demanding

3. $\Delta E/E$ ~ 0.1% ? demanding

4. Intensity $10^{10} / \text{sec}$ $10^{9} / 10^{8} \text{ at } 10 / 100 \text{ Hz}$

5. Precision for scanning "+" in synchrotrons ? large $\Delta p/p$

Linz & Alonso didn't quantify their highly critical arguments against laser acceleration!

3. Beam quality source-collimation-accelerator

- The production phase space is extremely small consequence of small
 μm size focal spot and <ps time duration often "sold" as attractive feature
 of laser acceleration
- 2. Can we take advantage of the extremely small production phase space?
- 3. No, it won't survive collection and following transport!
 - "Single particle" effects degrading quality:

chromatic aberration (second order effect):

 $\delta x \sim x' \delta p/p$

yet unexplored and open issues:

"Collective effects":

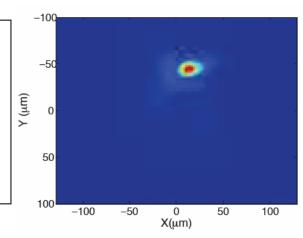
proton + neutralizing electron space charge at source

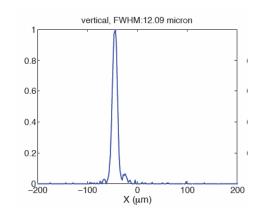
under study

(separation of p and e⁻ by solenoid B field)

proton beam space charge further downstream

- appears controllable

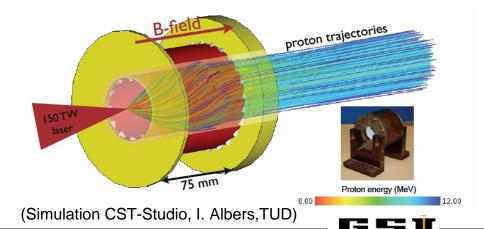

("geometric" aberration by nonuniform space charge)

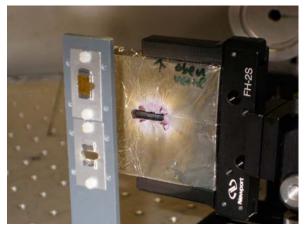


GSI-PHELIX Experiment (K. Witte et al., M. Roth et al.) used as reference case here

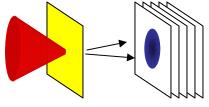
In 2008 demonstrated first time:

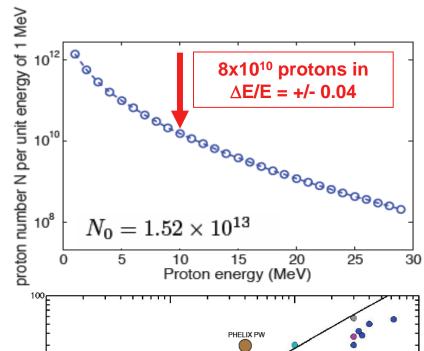
- 170 TW power
- 700 fs pulse length (120 J)
- novel copper focusing parabola
- spot size 12 X 17 µm (FWH
- Intensity: ~ 4 x 10¹⁹ W/cm²



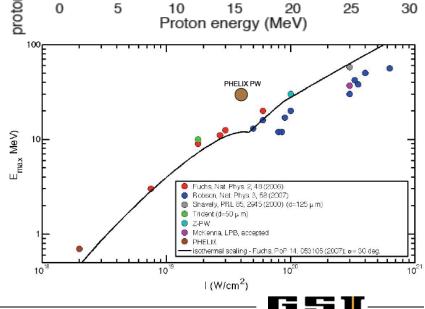

EXPERIMENT: Laser Ion Acceleration (TUD - GSI)

Goal:


Collimate an intense, laser generated proton beam using a pulsed solenoid magnet → transfer to conventional accelerator optics

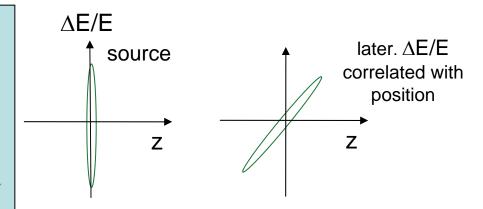


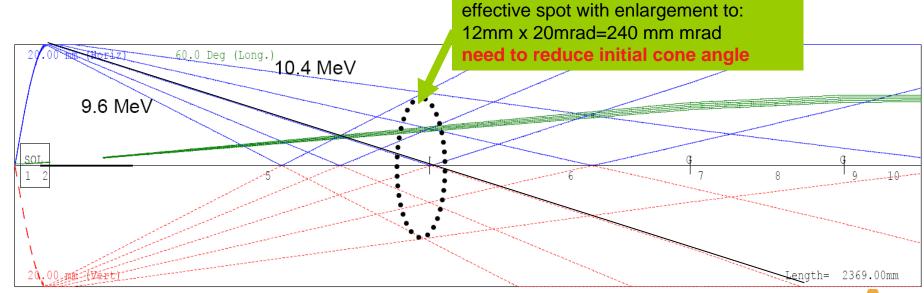
Results of the first PHELIX experiment on laser proton acceleration



Setup to test proton production

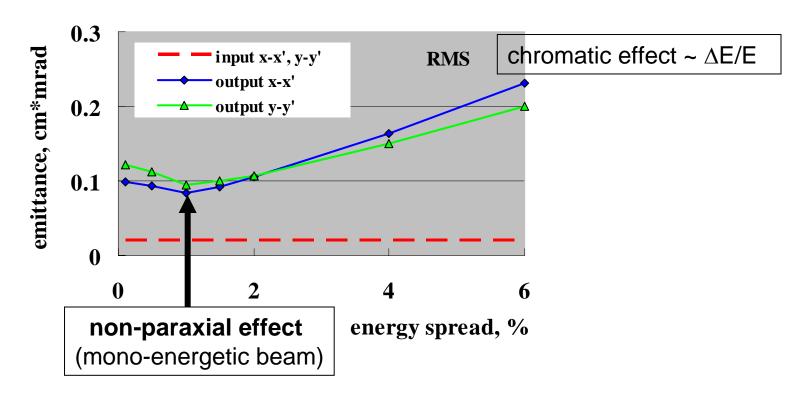
- Excellent laser beam quality
- Ion energy comparable with other systems
- Ion number as calculated
- All on the very first shot!! (further optimization pending)



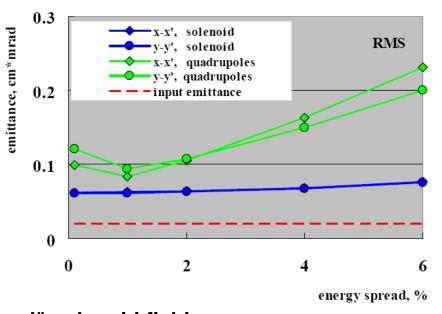

Chromatic effect blows up integrated emittance

from bunch head to tail – common collimation problem solenoid focusing: Δf/f ~ 2 Δp/p

10 MeV protons produced at 20° opening cone

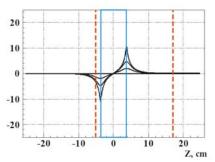

- modeled ΔE/E = +/-0.04 by beams of 9.6
 ... 10.4 MeV to describe chromatic
 effective emittance ~ x´_{ini} Δp/p
- much enlarged "effective spot"
- initial emittance < 1 mm mrad replaced by "effective emittance" 240 mm mrad

Detailed tracking simulation with DYNAMION* code (quadrupole channel)


- reduced cone angle from 22° to 2.5°
- confirms chromatic effect
- shows also nonparaxial effect

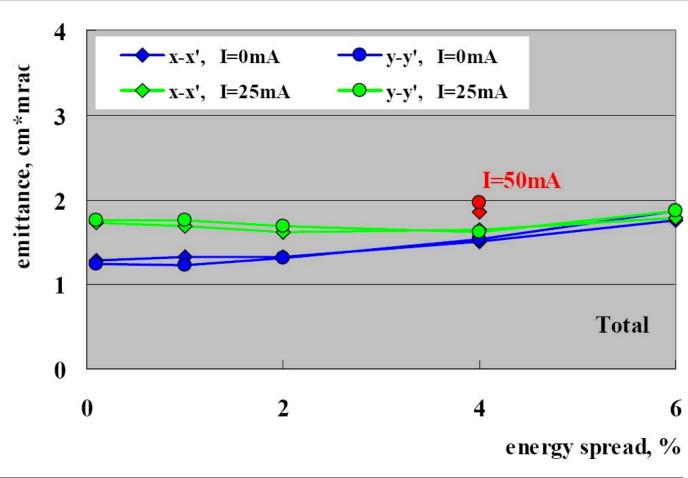


* S. Yaramishev et. al.

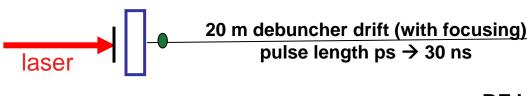


DYNAMION: comparison for quadrupole and solenoid collimators / cone angle of 2.50

"real" solenoid field


solenoid

- requires large field of 16 T
- symmetric focusing avoids large excursions as in quadrupoles
- larger distance source-solenoid reduces field, but increases chromatic effect → approaching quadrupole


Combined chromatic and space charge effects

production cone angle 5° (86 mrad) $\Delta E/E = +/-0.04$ extrapolate to 10° at 30 mA $\rightarrow \varepsilon \sim 40 \pi$ mm mrad with 2x10° p (reference bunch)

Applied to synchrotron injection at 10 MeV

reference p bunch:

 $2x10^9$ p Δ E/E=+/- 0.04 from cone +/- 10° \rightarrow

 ε ~40 π mm mrad $\delta p/p$ ~0.004

→ match well with space charge limit in ring !!

repeat 25 times bunch into bucket of 10 MHz (~70 kV)

10→250 MeV

next at GSI (2009/10):

we plan experiment with single bunch and 2 m drift + 108

MHz bunch rotator

→ diagnose 3D phase space + efficiency to verify our modeling

Parameters: laser injector - full laser scenario

250 MeV

Laser:

lon	N _{bunch}	N _{ring}	$\Delta Q_{ m inc}$ (space charge)	h	$\epsilon_{ ext{final}}$ π mm mrad (estimated)	δp/p _{final} (estimated)		
р	2x10 ⁹	5x10 ¹⁰	0.1 (1 s!!!)	25	~10 assume 10° cone	~0.001	~10 Hz ~PW	5Hz / 30J 30 fs on market
C ₆₊	6x10 ⁸	1.5x10 ¹⁰ every 10 s	0.1				~10 Hz ~PW	
full laser:	N _{batch}	N _{fraction}						
р	5x10 ⁷	5x10 ¹⁰ for 3D scanning in 10 s			<10 ? assume 2.5° cone	<0.001? linac bunch rotator: ~ 2-5 m length	100 Hz	>PW?

Conclusions

- As of today laser acceleration has a <u>theoretical</u> potential to compete with conventional drivers for therapy
- extremely high initial beam quality lost after collector → small "usable" fraction of total particle yield (PHELIX: "use" 3x10⁻³ of proton and 3x10⁻⁵ of photon yield)
- "laser injector" into synchrotron
 - should be ok (based on PHELIX data)
 - 10 Hz Petawatt laser in reach
 - hard to compete with linac technology !!
- "full energy laser" scenario lacks data
 - small cones (~2-3°), smaller production $\Delta E/E$ (100% \rightarrow 10-20%)
 - >100 Hz laser systems, nm foils (problems?)
 - reproducibility, precision unknown
- New accelerator technologies take time!!

