Operational experience with the Excyt facility

D. Rifuggiato

INFN Laboratori Nazionali del Sud

11th International Conference on Heavy Ion Accelerator Technology HIAT09

Venice, Italy, June 8-12 2009

LNS lay-out: accelerators and experimental hall

The LNS Accelerators

Superconducting Cyclotron

Compact (and complex) machine designed for acceleration of ions with variable mass and energy (0.01<q/A<0.5, 8 AMeV<E<100 AMeV)

Nuclear Physics (multifragmentation with 4π detectors): good timing quality

Applications (beam interaction with biological matter, radiation hardness (presentation by A.B. Alpat on Wednesday morning), superconducting materials)

Protontherapy: reliability

Primary accelerator for production of radioactive beams (ISOL and IFF):high intensity

Tandem

Electrostatic accelerator for ions with variable mass and energy (Vmax=14 MV)

Nuclear Physics (nuclear structure)

Nuclear astrophysics

Applications (cultural heritage, radiation hardness, superconducting materials)

Post-accelerator of radioactive beams

Ion sources

2 ECR sources (one superconducting) for the Superconducting Cyclotron **Negative sources for the Tandem**

EXCYT

Production and acceleration of radioactive beams at the Tandem energies

Use of the Cyclotron and Tandem beams in 2008

2757 h

40% Nuclear **Physics**

19% Proton-**Therapy**

Applications

20% Excyt

72% Nuclear Physics

22% **Applications**

6% Excyt

Cyclotron beam statistics 2001-2008: reliability

		Delivered	Setting	Failures
2001	10 months	2569	1424	975
2002	8 months	2485	1161	597
2003	8.5 months	2679	1204	587
2004	5 months	1529	944	187
2005	5.5 months	2020	964	122
2006	5.5 months	2017	1252	166
2007	4.5 months	1783	643	65
2008	7 months	2757	740	28

Data scaled for 8 months

Beams developed at the Cyclotron

¹¹²Sn 43.5 MeV/a.m.u.

$\mathbf{A}\mathbf{X}$	E (MeV/a.m.u.)
H_2^+	62,80
$\mathbf{H}_{3^{+}}^{^{2}}$	45
$^{2}\mathbf{D}^{+}$	35,62,80
⁴ He	25,80
He-H	21
⁹ Be	45
¹² C	23,62,80
¹³ C	45
¹⁴ N	62,80
¹⁶ O	21,25,62,80
¹⁸ O	15
¹⁹ F	35,40,50
²⁰ Ne	21,40,45,62
^{32}S	19.5
³⁵ Cl	19.5
³⁶ Ar	16,38
⁴⁰ Ar	15,21,40
⁴⁰ Ca	10,25,40,45
⁴⁸ Ca	10,45
⁵⁸ Ni	16,23,25,30,35,40,45
⁶² Ni	25,35
⁸⁶ Kr	15,21,25
⁹³ Nb	15,17,23,30,38
¹¹² Sn	15.5,35,43.5
¹¹⁶ Sn	23,30,38
¹²⁰ Sn	40
¹²⁴ Sn	15,25,30,35
¹²⁹ Xe	21,23
¹⁹⁷ Au	10,15,20,21,23

CATANA: a facility for protontherapy of the eye tumors

2002: 750 h 23 patients 2003: 600 h 34 patients 2004: 350 h 19 patients 2005: 420 h 16 patients 2006: 492 h 31 patients 2007: 197 h 18 patients 2008: 290 h 32 patients 2009: 110 h 5 patients

Total: 178 patients

5 sessions on average per year

Increasing the Cyclotron beam intensity

Critical features: beam diagnostics and extraction (ε≈ 50%)

Increasing the Cyclotron beam intensity

$100 \rightarrow 500$ watt

Septum: directly cooled

New septum material: Tungsten vs.

Tantalum

Bigger thickness: 0.3 vs. 0.15 mm

⇒ extraction efficiency 63% vs. 50%

¹³C⁴⁺ @ 45 AMeV (EXCYT primary beam)

Pacc = 237 watt

Pextr = 150 watt I=1020 enA= 255 pnA

 $\varepsilon = 63\%$

Pdiss = 87 watt

Increasing the Cyclotron beam intensity

$200 \rightarrow 500$ watt

Short term upgrading: a primary beam power of 500 watt

Before going beyond 150 watt it is wise to look for a further increase of the extraction efficiency

Use of phase slits exploiting the phase-radius correlation given by $\Delta E = -\Delta \phi \int \sin \phi \ dE$

The source-cyclotron transmission needs to be improved, the injection efficiency being ~15%

Beam transport along the injection line is now being considered

Tandem status

Leaks have been detected in the 1° and 8° accelerating tubes

Alternatives to High Voltage belts have not been found

Contacts with VIVIRAD (France) to face both the belt question and the tubes problems

¹⁴C beam at the Tandem

The project started: many initiatives have been realised

Contacts with Dr. Hans Joerg Maier (Munich) to produce Fe₃¹⁴C pellets

BUT.....

¹⁴C elemental powder is not easy to be available with the required chemical characteristics

EXCYT: the mass separator

The mass separator system consists of a pre-separator and 2 main stages, the pre-separator and the first stage being assembled on two 250 kV platforms

 $(M/\Delta M)_{Pre} \approx 180$ (pre-separator : 18° magnet and a quadruplet of 4 electrostatic quadrupoles)

 $(M/\Delta M)_{1st} \approx 2000$ (I stage: 2 magnets (77°, 90°) and 2 quadruplets of 4 electrostatic quadrupoles)

 $(M/\Delta M)_{2nd} \approx 20000$ (II stage: 2 magnets (90°) and a quadruplet of 4 electrostatic quadrupoles)

The Target-ion source complex

Diagnostics of Low Energy Beams: LEBI

Diagnostics for High Energy (Tandem) RIBs

Beam profile monitor based on a pair of scintillating fibres scanning the beam

Fibres diameter: 300 ÷ 500 μm Plastic fibres for low intensity

Position sensitive silicon detectors

- beam intensity measurement
- beam energy spectra
- 2D beam profile monitor
- identification of the beam particles (△E E)
 by adding a thin silicon detector to
 obtain a telescope configuration

size: 50 x 50 mm²

EXCYT transmission factors

Production: at least 3 times the value found with the cylinder target

A factor 1.4 after the Charge Exchange Cell (CEC)

The Tandem transmission could be increased by a factor 1.3

With a primary beam power of 200 watt, on target

1.8 • 10⁵

pps might be expected

EXCYT status and prospects

- ◆ The facility has been commissioned and 3 experiments have been carried out
- ◆ For ⁸Li an intensity of 5•10⁴ pps is available on target

Safety and reliability:

- Revision of the source remote handling
- Air and water treatment
- Shielding of the primary beam line (troubles on hard disks, CPU, electronics)
- Upgrading of plants (especially dehumidification)

Optimization:

- > A new focusing element in the Tandem injection line to improve the acceleration efficiency
- > Mechanical re-design of the target (ioniser) to improve the electric contacts
- > Hall probes to be implemented on the separator
 - D. Rifuggiato, INFN-LNS, Operational experience with the Excyt facility, HIAT09, Venice, Italy, June 8-12 2009

EXCYT status and prospects

Short term upgrading:

- ◆ Provide the long beam lines (Magnex and Chimera) with low intensity diagnostics
- **♦ Provide the platforms with services to install different sources**
- **◆Gain a factor 3 in the primary beam intensity**

EXCYT status and prospects

Short term upgrading: possible future beams

8,9 Li	Positive Ion Source	2·10 ⁵ pps ⁸ Li	(2·10 ⁷ @ 300 KeV)		
²¹ Na	Positive Ion Source	3⋅10 ⁴ pps	(3·10 ⁶ @ 300 KeV)		
15 O	Hot Plasma	2.5·10 ⁶ pps	(3·10 ⁷ @ 300 KeV)		
	ε _{CEC} =30%, present target				
^{25, 26} AI	Hot Plasma Target: SiC				
^{26, 27} Si	Hot Plasma Target: SiC				
^{7, 11} Be	Hot Plasma				
10, 11 C	Hot Plasma				
38, 39, 40 C	Negative Ion Source, no CEC				
17, 18 F	KENIS ion source, no CEC				

D. Rifuggiato, INFN-LNS, Operational experience with the Excyt facility, HIAT09, Venice, Italy, June 8-12 2009

EXCYT prospects

R&D activities:

- ◆ Test bench installation
- **◆** Target ion source complex

R&D activities on the Target – Ion source complex

- Better undestanding of diffusion-effusion models
- New target materials (e.g. Foams, Fibers, Ta foils) and geometry
- New PIS surface materials
- Sources development (negative, microwave)

Thank you for your attention

INFN-LNS

Istituto Nazionale di Fisica Nucleare
Laboratori Nazionali del Sud, Catania
www.lns.infn.it

Ioni an sea 2 km