Progress on the commissioning of Radioactive Isotope Beam Factory at RIKEN Nishina Center

Kazunari Yamada

- T. Dantsuka, M. Fujimaki, T. Fujinawa, N. Fukunishi, A. Goto, H. Hasebe,
- Y. Higurashi, E. Ikezawa, O. Kamigaito, M. Kase, M. Kobayashi-Komiyama,
- H. Kuboki, K. Kumagai, T. Maie, M. Nagase, T. Nakagawa, J. Ohnishi,
- H. Okuno, N. Sakamoto, Y. Sato, K. Suda, M. Wakasugi, H. Watanabe,
- T. Watanabe, Y. Watanabe, Y. Yano, S. Yokouchi RIKEN Nishina Center, Wako, Saitama 351-0198, Japan

RI Beam Factory (RIBF) at RIKEN Nishina Center

Aims: To produce the world's most intense RI beams

To make systematic studies on unstable nuclei far from stability

RILAC: RIken heavy-ion LinAC CSM: Charge-State Multiplier RRC: Riken Ring Cyclotron

fRC: fixed-frequency Ring Cyclotron IRC: Intermediate-stage Ring Cyclotron SRC: Superconducting Ring Cyclotron

E = 440 MeV/u (light ion)

E = 400 MeV/u (heavy ion)

E = 345 MeV/u (very heavy ion, uranium)

Design goal $I = 1p\mu A (6 \times 10^{12} \#/s)$

Ring cyclotrons

fRC

IRC

SRC

	RRC	fRC	IRC	SRC
K-number	540	570	980	2600
(MeV)				
Sector	4	4	4	6
magnets				
Velocity	4.0	2.1	1.5	1.5
gain				
Trim coils	26	10	20	4(SC)
(/sector)				22(NC)
RF	2	2+FT	2+FT	4+FT
resonators				
Frequency	18-38	54.75	18-38	18-38
range				

RF SYSTEM: N. Sakamoto et al., TU10.

2009/6/8 HIAT09

SC = superconducting

NC = normal conducting

FT = flat-top resonator

Acceleration mode of RIBF

Variable-energy mode : ²⁷Al, ⁴⁸Ca, ⁸⁶Kr up to 400 MeV/u @SRC

Fixed-energy mode: 238U 345 MeV/u @SRC

Light ion mode : Pol. d, ¹⁴N 250-440 MeV/u @SRC

Milestones

	Date	Preparation of SRC hardware	Date	Beam commissioning of RIBF	
2	005/9/19 1st Cool-down started		2006/9/29	First beam extracted from fRC (238U73+ 50MeV/u)	
	2005/10/13 1:00			First beam extracted from IRC (84Kr ³¹⁺ 114MeV/u)	
2	2005/11/7	Excitation test (Imain = 5000 A, Itrim = 3000 A)	2006/12/17	Beam injection to SRC	
2	2005/11/8	Trouble due to a helium leak	2006/12/28 16:00	First beam extracted from SRC (27AI10+ 345MeV/u)	
2	2006/4/15	Full excitation again	2007/3/15	First RI beam production at BigRIPS	
	2006/4/17- 2006/6/14	Magnetic field mapping	2007/03/23	First 345MeV/u ²³⁸ U ⁸⁶⁺ beam extracted from SRC	
2	2006/6/14	Fast shutdown test from full excitation	2007/05-6	New isotope search (125Pd and 126Pd was discovered)	
2	2006/6/24	6/6/24 Arrival of RF resonators		⁸⁶ Kr ³⁴⁺ 345MeV/u 32pnA from SRC	
-	2006/10	RF, beam diagnostics, vacuum pumping system were installed	2008/11	Intensity of uranium beam multiplied up to 0.4pnA	
2	2006/10/18	Vacuum for the beam < 10 ⁻⁵ Pa	2008/12	High intensity 345MeV/u ⁴⁸ Ca beam (170pnA)	
2	2006/11/13	RF conditioning started.	2008/12	New isotope search (~20 candidates)	
	2007/12- 2008/9	Trouble of helium cryogenic system	2009/3-5	250MeV/u ¹⁴ N and Pol d beam acceleration	

First beam extraction of SRC

2006/12/28 16:00 ²⁷Al¹⁰⁺ 345MeV/u

2007/3/23 21:00 ²³⁸U⁸⁶⁺ 345MeV/u

2007/5/8~6/3
First experiment at RIBF

New isotope search (125Pd and 126Pd were discovered)

Transmission efficiency of ²³⁸U beam at 2007/6

Extraction efficiency

fRC: 88%

IRC: 67%

SRC: ~40%

N. Fukunishi et al., Proc. of PASJ4-LAM32, WO01.

- Insufficient beam tuning
- →Inappropriate beam diagnostics (Huge number of secondary electrons)
- →Instability of rf in RILAC
- Poor uniformity and lifetime of strippers

- Modification of beam diagnostics
- Renewal of low-level circuit
- Development of stripper→foil, rotating, gas...

Example: modification of SRC-MDP

Huge number of secondary electron

Take account of radial beam pattern

Large fence for secondary-electron

New differential electrode W 0.3mm × 3mm

Measures to reduce noise

One side grounding

→ both side

Precise adjustment of shorting-plate in FT resonator

HIAT09

Necessity on precise adjustment of flat-top resonator

Intensity evolution of uranium beam

Transmission efficiency of uranium beam has been improved after the modification of beam diagnostic devices.

Extraction efficiency

2007/6 2008/11

fRC: 88%→>90%

IRC: 67%→86%

SRC: 40%→66%

Beam intensity

2007/6 2008/1

4nA 35nA

(0.4pnA)

~10 times higher

Influence of high intensity ⁴⁸Ca beam

⁴⁸Ca²⁰⁺ 345MeV/u: 170pnA (2008/12)

Transmission efficiency

SRC extraction: 82%

Total: 35%

⁴⁸Ca+Be secondary beam production

	BigRIPS	RIPS	
²² C	10cps	0.006cps	
³⁰ Ne	300cps	0.2cps	
³¹ Ne	10cps	20(4days)	
³² Ne	5cps	-	
⁴² Si	15cps	-	

³¹Ne beam production

		RIPS 1997	BigRIPS 2008	BigRIPS/RIPS ratio	
Yield [cps]		0.0005	10	20, 000	
Primary beam intnsity[pnA]		2	100	50	
Target[g/cm²]		0.3	2.8	10	
Acceptance	θ _x [%]	60	90	1.5	
	θ _y [%]	60	97	1 * 6	
	<i>∆p</i> [%]	30	60	2	
σ (⁴⁸ Ca→ 31 Ne) [arb]		1	8	8	

IRC-bypass beam line

Light ion beam acceleration

2009/2: acceleration test of ¹⁴N 250MeV/u

2009/3: commissioning of SHARAQ spectrometer by ¹⁴N beam

2009/4 : experiment using 250MeV/u polarized deuteron beam

(single turn extraction was required)

2009/5: BigRIPS and SHARAQ test experiment using ¹⁴N beam

Good single turn extraction of SRC (less than 0.01%)

Outlooks

What we should perform to increase beam intensity much

- Charge stripper (uniformity, lifetime ...)
 - → difficult but significant problem.....
- To improve stability
 - > renewal of low-level circuit for RILAC
 - → modification of reference-signal distribution
 - → magnet, supply... temperature?
- Construction of new superconducting ECRIS
- Construction of new injector linac RILAC2
- Radioactivation, maintenance, interlock.....

HTS SQUID beam current monitor: T. Watanabe et al. WE5.

Summary

- World's first superconducting ring cyclotron SRC was successfully commissioned and works good
- Transmission efficiency was improved after modifying beam diagnostic devices
- 170pnA ⁴⁸Ca and 0.4pnA ²³⁸U are now available
- Charge stripper has significant problems (uniformity and lifetime)
- Low-level circuit of RILAC will be renewal
- Test of new superconducting ECR ion source has started
- New injector linac is now in progress.

Degradation of cooling power of He refrigerator

- Increase of temperature of 80K stage adsorber.
- •Decrease of inlet pressure at the 1st turbine.
- Accumulation of some impurity somewhere around the 1st turbine.

What is the impurity?

→Compressor oil

Now washing away the refrigerator.

Extension of the 3.5th and 5th oil separator.

Isochronous quality of new cyclotrons

fRC (fixed-frequency Ring Cyclotron)

July 21st, 2006 fRC Beam was accelerated up to the energy of design goal.

Measuring the beam intensity at final orbit of fRC.

September 29th, 2006 First beam extraction of ²³⁸U⁷³⁺ 50 MeV/n from fRC.

Beam profile at the downstream of fRC.

IRC (Intermediate-stage Ring Cyclotron)

K-value
Sector
Sector 4
Sector angle
Injection radius
Extraction radius 4.15 m
Resonator
RF frequency
Harmonics
980 MeV
4
53 deg.
2.77 m
2 + 1 (FT)
18—38 MHz

November 25th ,2006 2:20 First beam extraction of ⁸⁴Kr³¹⁺ 114 MeV/n from IRC. Only 110 minutes from injection to extraction.

Beam profile at the downstream of IRC. (Four hours after the beam extraction.)

SRC (Super-conducting Ring Cyclotron)

K-value 2600 MeV
Sector 6
Sector angle 25 deg
Injection radius 3.56 m
Extraction radius 5.36 m

Resonator 4 + 1 (FT) RF frequency 18—38 MHz Harmonics 6 (5)

SRC

Superconducting Ring Cyclotron (SRC)

K = 2,600 MeV

Max. field: 3.8T (235 MJ) RF frequency: 18-42 MHz

Harmonic Number: 6

Diameter: 19 m

Height: 8 m

Weight: 8,300 tons

Sector magnets: 6

Sector angle: 25 deg.

RF resonators: 4

Flat-top resonator: 1

Injection elements.

Extraction elements.

Beam diagnostics.

Self Magnetic Shield Self Radiation Shield

Injection/extraction devices and diagnostics of SRC

Cold mass assembly

Superconductor

Yield Strength > 56.2 MPa

(cf. 40 MPa for pure AI)

Residual Resistivity Ratio of Al > 803

Structure of the main coil block

Circumference ~10m

lmax = 5000 A

Solenoid winding with 396 turns

4 MAT/sector

Vertical Cooling Channels (50 %)

Maddock Stabilization current: 6300 A

> Operational Cuurent: 5000 A

Excitation curve (R = 5.4m)

Super conducting coil of SRC

RF resonators

Control Dewar

Acceleration Resonator

Coaxial Transmission Lines

Flat-top Resonator

Acceleration Resonators: 4

Gap: Single

Freq.: 18—42MHz Max. Voltage: 600kV Power Amp.: 150kW

Flat-top Resonator: 1

Gap: Single

Freq.: 72—126MHz Max. Voltage: 350kV Power Amp.: 60kW

The first cool-down and excitation of SRC

Magnetic forces in excitation of SRC

Huge magnetic forces on the coils

In the excitations, we continuously measured the forces using the strain gauges attached to all the supports in the excitations, checking whether our calculations are correct or not.

Magnetic forces in excitation of SRC

The measurement clarified that the forces were smaller than the designed limit and enough to keep displacements of the coils small in excitations.

Power supplies and coil protection of SRC

Quench characteristic

Current decay: 63 sec

Temp. rise: 140 K

Volt. induction: 1.5 kV/2

Switch for Fast shut-down (63 s)
Switch for Slow shut-down (1206 s)

Coil voltages in fast shut-down test from full excitation of SRC

The main coils and S.C. Trim coils are strongly coupled together due to their relative positions.

All the coils were safely shut down even in emergency.

Field mapping over the acceleration region of SRC

Field Mapper: 3 (60 deg./each)

Hall Probe: 5

Control: 2 axis (Rot./Trans.)

Mesh: about 50mm

Meas. Time: about 3h30m/60deg.

Measured field profiles along the sector-center axis of SRC

HIAT09

- O Good agreement (0.16%~0.35%)
- O Small field dispersion among the sectors

Field Disturbances

- ·SM1 has a slightly different shape.
- ·Disturbance from MIC2 and MDC3

Small enough to be adjusted by the correction coils in the magnetic channels and aux. power supplies of the main and trim coils. 2009/6/8

Main Coil: Bending power during the acceleration

Evacuation of SRC beam chamber

Evacuation started in September.

Cryopumps were started on '06/10/18.

Vacuum pressures in normal operation: 2~3 x 10 ⁻⁶ Pa

Local magnetic shields (ex. The parts in the central region).

SRC Beam commissioning (27Al¹⁰⁺ 345AMeV)

d(side)

●12/17 18:20 Beam Injection started.

December 28th, 2006 16:00 First beam extraction of ²⁷Al¹⁰⁺ 345 MeV/n from SRC.

Beam profile at the downstream of SRC.

March 15th, 2007 First RI beam production at BigRIPS. (86Kr 345 MeV/n)

TOF (F3—F7)

March 15th, 2007 Facility inspection March 22nd, 2007 Passed

March 23rd, 2007 21:00 First beam extraction of ²³⁸U⁸⁶⁺ 345 MeV/n from SRC.

Full operation of RIBF.

For the first experiment at RIBF using uranium beam, re-buncher system was reconstructed (April 2007).

New isotope search (May 8th – June 3rd, 2007) → Discovery of ¹²⁵Pd.

Stability of magnetic filed on fRC

12:00:00

Time

18:00:00

24:00:00

Magnetic field was adjusted at the previous nigh (+0.8 gauss)

2009/6/8 HIAT09

6:00:00

1551.3

0:00:00

Longitudinal profile for IRC beam

Section that causes beam-quarity down.

Matters should be investigated and improved.

Vacuum between ion source and RILAC.

Advance of beam diagnostics.

Faraday cup

Radial probe

Plastic scintillator for TOF measurement.

Make full use of flat-top resonator.

Im.provement of long-range stability

Beam phase measured by LIA.

History of uranium beam intensity during beam commissioning.

Improvement

Feb. 2007 → Jun. 2007

Beam intensity from ion source : 2 times

Transmission efficiency of RILAC: 2 times

Feb. 2006 → Jun. 2007

Transmission efficiency of RRC: 2.4 times

Summary

Beam commissioning was successfully achieved.

Transmission efficiency is insufficient.

→ many improvement is required.

Transmission efficiency \rightarrow Up to 90% for fRC, IRC, and SRC. High power uranium beam \rightarrow New ion source.

Problem of SRC-MDP

パターンがつぶれる 外周側で負の値になる

微分電極に二次電子 低磁場領域

ノイズがのる 値が振り切れる

ゼロ点 FT空洞の漏れ電磁波 プローブがアンテナ

Effect of FC, MDP modification

周回パターン読める 取り出し電流値精度向

SRC微調整可能

SRCビーム通過効率向上

²³⁸U 345MeV/u

2007/6: <40% (<5nA)

↓ ~10倍

2008/11: 60% (40nA)

FTと同時使用できず →48Ca~向けて改良

Heat protection of SRC-EDC

大強度ビーム加速

⁴⁸Ca 345MeV/u 200pnA = 3.3kW

EDC許容: < 500W

·EDC保護

・温度上昇が減るように調整

(SRC-EIC, IRC-EDC にも適用予定)

EDCセプタム(2009/01/29)

FT相同調板調整時のEDC温度変化

FT漏れ電磁波の減少

High intensity ⁴⁸Ca beam

Energy dependent cross sections of projectile fragmentation

DayOne Experiments

Reaction Cross Section (Ohtsubo et al.)

```
~3 days
        <sup>29-32</sup>Ne
        30-34Na
```

Coulomb Breakup (Nakamura et al.)

```
~2.5 days
```

γ Spectroscopy (Scheit et al.)

```
~0.5days
```

γ Spectroscopy (Takeuchi et al.) 42Si

31**Ne** 19,22C ³²Ne → Canceled HIAT09 2009/6/8

IRC-bypass beam line

IRC-bypass beam line

IRC-bypass beam line

