Acceleration, Deceleration and Bunching of Stored Cooled Ion Beams at the TSR, Heidelberg

Manfred Grieser

Accelerator facility at MPI-K Heidelberg

The heavy ion storage ring TSR

RF acceleration and deceleration

RF resonator

quadrupole coil resonator

frequency range: 0.5-7 MHz only with magnetization:

factor ≈ 7 $I_{\text{mag}} = 0-150 \text{ A}$

rf voltage: max 5 kV rf power: max 10 kW

ferrite: Philips FXC 8C12

ferrite size: 498x270x25 mm³

number of ferrites: 20

cooling: 21 water cooled Cu disks

quadrupole

- magnetization of the ferrites
- decoupling of rf field and magnetization field

Acceleration tests with ¹²C⁶⁺ ions

energy E= 73.3 MeV \rightarrow 362 MeV \Leftrightarrow B· ρ = 0.71 Tm \rightarrow 1.57 Tm

MG2

Mass selective acceleration at the heavy ion storage ring TSR

ion source produces several heavy molecular ion species with relative mass differences of $\Delta m/m=3.7\cdot10^{-4}$ (DCND+,N2D+).

with mass selective acceleration separation of the right molecular ion species, for example DCND⁺

relation between ion mass and Schottky frequency for constant energy:

$$\frac{\Delta f}{f} = -\frac{1}{2} \frac{\Delta m}{m} (1 + \alpha)$$

Description of the mass selective acceleration in the longitudinal phase space

longitudinal phase space after injection

phase space coordinates

 $\Delta f_0 = f_0 - f_{0,s}$ $\Delta \phi = \phi - \phi_s$ f_0 - ion revolution, $f_{0,s}$ - revolution frequency of synchronous particle ϕ - rf phase when ion reaches the rf gap

 ϕ_s - rf phase of the synchronous particle

because relative intensity height changes during the beam time, intensities of different ion species was assumed to be the same in the simulation $\sigma=120 \text{ eV}$

Simulation of mass selective acceleration

Mass selective RF acceleration at the heavy ion storage ring TSR

Mass selective RF acceleration at the heavy ion storage ring TSR

Deceleration tests with ¹²C⁶⁺ ions

provide highly charged ions at low energies

energy E= 73.3 MeV \rightarrow 11.8 MeV (1MeV/u) \Leftrightarrow B· ρ = 0.71 Tm \rightarrow 0.28 Tm

bunch length increase during deceleration process ⇒ particle loss ⇒ electron cooling at injection necessary to get short initial bunches

TSR experiments with a reaction microscope

reaction microscope

tool to measure the dynamic of charge transfer/ionization

processes between a stored ion beam and an neutral beam

Helmholz

for some experiments very short ion bunches are required

gas jet sand ion beam

Bunch length compression with electron cooling

Measured bunch profile with electron cooling

measured bunch profile

measurement with capacitive pick up

beam $^{12}C^{6+}$ E=50 MeV I = 45 μ A U=795 V W = 20 ns

for $R \rightarrow \infty$: $U \sim I$

bunch length as a function of resonator voltage I=20 µA

bunch length as a function of intensity U=795 V

Space charge limitation of bunch length

bunch profile with electron cooling

space charge ion bunch

effective acceleration voltage:

$$U_{eff}(\Delta \phi) = U \cdot \sin(\Delta \phi + \phi_s) + U_s(\Delta \phi)$$

with
$$U_s(\Delta \phi) = E_s(\Delta \phi) \cdot C_0$$
 C_0 - circumference

space charge limit

at
$$\eta = \frac{\Delta f / f}{\Delta p / p} > 0$$
 $\mathbf{U}_{eff}(\Delta \phi) = 0$ \Longrightarrow

beam width at space charge limit

$$w = C_0 \frac{\sqrt[3]{3(1 + 2\ln(\frac{R}{r}))I}}{\sqrt[3]{2^4 \pi^2 c^4 \epsilon_0 \gamma^2 h^2 \beta^4 U}}$$

parabola profile

Space charge limitation comparison theory and measurements

space charge limit: parabola profile

$$w = C_0 \frac{\sqrt[3]{3(1+2\ln(\frac{R}{r}))I}}{\sqrt[3]{2^4 \pi^2 c^4 \epsilon_0 \gamma^2 h^2 \beta^4 U}}$$

I – intensity, U - resonator voltage

bunch length as a function of resonator voltage U I=20 μA

bunch length as a function of intensity I U=795 V

Operation of the storage ring at η <0 ring

f- revolution frequency

p- momentum

at
$$\eta = \frac{\Delta f / f}{\Delta p / p} < 0$$

particle

effective acceleration voltage:

$$U_{eff}(\Delta \phi) = U \cdot \sin(\Delta \phi + \phi_s) + U_s(\Delta \phi)$$

with $U_s(\Delta \phi) = E_s(\Delta \phi) \cdot C_0$ C₀ - circumference

at
$$\eta = \frac{\Delta f / f}{\Delta p / p} < 0$$

at $\eta = \frac{\Delta f/f}{\Delta p/p} < 0$ space charge voltage $U \cdot \sin(\Delta \phi + \pi)$, resonator voltage $U \cdot \sin(\Delta \phi + \pi)$, respace charge limit at $\eta < 0$!!!! space charge voltage $U_s(\Delta \phi)$ doesn't compensate no space charge limit at η<0 !!!!

> \Rightarrow operation of the storage ring at η <0 to achieve smaller bunch length

The slip factor η of a storage ring

To get the η parameter negative the orbit length of ions with positive momentum deviation has to increased by increasing the dispersion $D_x(s)$ inside the dipole magnets

increasing of the orbit length degreases revolution frequency

$$\eta = \frac{\Delta f / f}{\Delta p / p} = \frac{1}{\gamma^2} - \alpha \quad \text{with} \quad \alpha = \frac{\Delta C_0 / C_0}{\Delta p / p} = \frac{\oint \frac{D_x(s)}{\rho(s)} ds}{C_0} \quad \text{for} \quad \text{for} \quad \text{12C6+ E=50 MeV} \quad \eta = -0.57$$

 $\alpha = 1.57$

Measured bunch length at η =-0.57

comparison to the standard mode η =0.9

for ¹²C⁶⁺ E=50 MeV and h=6: w(ns) = 62.115 $\cdot \frac{I(\mu A)^{0.31}}{U(V)^{0.34}}$

a corresponding Gaussian distribution having the **same half width**: $\sigma_{cor} = 0.6 \cdot w$

$$\Rightarrow$$
 for I=0.5 μ A, U = 48 V: σ_{cor} = 8 ns

 \Rightarrow shorter bunch length (<u>factor 2.7</u>) are archived at η <0 for the same U an I compared to the standard mode with η >0