

NIRS

Review of Heavy Ion Accelerators for Hadrontherapy

Koji Noda

Research Center for Charged Particle Therapy
National Institute of Radiological Sciences
11th Int'l Conf. on Heavy Ion Accelerator Technology,

1. Introduction

- 2. Heavy-Ion Cancer Therapy Facility
 - Asia
 - Europe
- 3. New Project at HIMAC

4. Summary

Feature of Ion Radiotherapy

Biological Effect of Ion beams

Pioneering Work at LBL

May '77: 1st He patient Nov. '77: 1st Ne patient Mar. '79: 1st Ar patient Nov. '82: 1st Si patient

Total: 1,314 @'77-92 He patients 858 Heavier ions 456

1. Introduction

- 2. Heavy-Ion Cancer Therapy Facility
 - Asia
 - Europe
- 3. New Project at HIMAC

4. Summary

HIMAC facility

• Ion species: High LET (100keV/μm) charged particles

→ He, C, Ne, Sí, Ar

Range:

30cm in soft tissue

Maximum irradiation area:

22cm Φ

• Dose rate:

5Gy/min

Beam direction:

horizontal, vertical

More than 4,500 pts treated since '94. ≈750 pts/y, ≈70 shots/day @180 d/y

HIMAC (Heavy Ion Medical Accelerator in Chiba)

Present HIMAC Method

Broad Beam Method with Wobbler and Scatterer

- O Dose distribution is independent of beam quality
- O Easy dose management
- △ Low beam-utilization efficiency
- × Extra-dose is given on normal tissue when irregular shape
- × Require Bolus and patient collimator

Hyogo Facility

1) Proton:

Energy: 230 MeV

2 Gantry + **1 H**

2) Carbon

Energy: 320 MeV/n

1 H&V, 45° line

•10GHz-ECR IS: 2

-200MHz RFQ+DTL: 5MeV/n

•Synchrotron(96m)

Multiturn Injection

RF-KO extraction

Design and R&D by NIRS

Development Irrad. Tech.

High-Precision MLC

Gunma University

Synchrotron

Energy: 140-400 MeV/n H&V, H, V and R&D room

- 10GHz-ECR IS
- •200MHz RFQ+APF-IH: 0.6 - 4MeV/n
- Synchrotron(~62m)
 Multiturn Injection
 RF-KO extraction
 Acc. Driven extraction
- Spiral WobblingRespiratory-Gated Irrad.Layer-stacking Irrad.

10GHz-ECR

RFQ+APF-IH Linac

IMP at Lanzhou, China

Deeply seated tumor 430MeV/n C Cooler-Synchrotron

- Injector: SFC
- Cooler SynchroCharge Ex. Inj.Cool Stacking

HIT Facility

• p, He, C, O:

Energy: 50-430 MeV

1 Gantry + 2 H

•ECR IS: 2

-216MHz RFQ+IH: 7MeV/n

•Synchrotron(~60m) **Multiturn Injection RF-KO** extraction

- Variable Energy Operation
- Variable FT (1-10s)
- Variable Intensity
- Variable Beam Size

Based on GSI treatments of 400pts since'97, HIT has been constructed.

Raster Scanning Developed by GSI

- Variable Energy Operation
- Variable Intensity
- Variable Beam Size

Revised HIT Accelerator Design by Siemens

The HIT accelerator design has been modified To improve technical capabilities
To reduce const ruction and operating costs
Examples

- 1) 12dipoles (each8tons) instead of 6 (each25tons) cost reduction, easier installation and handling
- 2) Smaller and lighter quadrupoles cost reduction, less power consumption
- 3) Optimized injection and extraction system Higher intensity, Shorter treatment times
- 4) 3sources more flexibility, Other ions species

Courtesy of HIT and Danfysik

New Projects by Siemens

Marburg

• p, He, C, O: Energy: p 7-250 MeV C 7-400 MeV/n 2 H + H&V

•ECR IS: 2

•216MHz RFQ+IH: 7MeV/n

Synchrotron(~78m)
 Multiturn Injection
 Acc Driven extraction
 RF-KO extraction

Active scan

1. Introduction

- 2. Heavy-Ion Cancer Therapy Facility
 - Asia
 - Europe
- 3. New Project at HIMAC

4. Summary

Motivation of New Treatment Facility

Large changing target shape and size

We should modify a treatment planning corresponding to change of target during treatment,

⇒ Adaptive Cancer Treatment

of pencil beam

3D Scanning Method

Adaptive Therapy by 3D Scanning

- 1) Beam utilization efficiency ~100%
- 2) Irradiation on irregular shape target
- 3) No bolus & collimator
- 1) Depend directly on beam quality
- 2) Not easy dose management
- 3) Sensitive to organ motion

3D organ motion with breathing

Moving Tumor Irradiation

Simulation of moving tumor irradiation

Non-gating

Example: Φ40mm spherical target

$$s(t) = 1.7 - 31.3 \cdot \cos^4(\pi t / 3.2s - \phi)$$

Motion:7mm in gate

with rescanning (8 times)

In order to avoid hot/cold spot due to target motion, we decided to employ "gating method" with rescanning.

Moving Tumor Irradiation

Simulation of moving tumor irradiation

 $s(t) = 1.7 - 31.3 \cdot \cos^4(\pi t / 3.2s - \phi)$

Motion:7mm in gate

In order to avoid hot/cold spot due to target motion, we decided to employ "gating method" with rescanning.

Fast scanning for moving target

In order to realize the rescanning with gating within acceptable irradiation time, we have studied following strategy.

- 1. Treatment planning for fast scanning ⇒ ×5
- 2. Modification of acc. operation $\Rightarrow \times 2$
- 3. Fast scanning magnet ⇒ ×10

100-times speed up of irradiation time

(1) Planning for fast scanning

Optimization including the contribution of extra dose in raster scanning

Extra dose in raster scanning (EDR) : U_i

Without U_i

 $U_i \propto \text{Beam intensity}$

Fast scanning with beam of high intensity

EDR cause dose distortion

Cost function: f(w)

$$f(w) = \sum_{i \in \mathcal{T}} \left(Q_{\mathcal{P}}^{o} \left[D_{biol,i}(w) + U_{i} - D_{\mathcal{P}}^{max} \right]_{+}^{2} + Q_{\mathcal{P}}^{u} \left[D_{\mathcal{P}}^{min} + U_{i} - D_{biol,i}(w) \right]_{+}^{2} \right) + \sum_{i \in \mathcal{O}} Q_{\mathcal{O}} \left[D_{biol,i}(w) + U_{i} - D_{\mathcal{O}}^{max} \right]_{+}^{2}$$

Predict EDR

(2) Extended FT in Synchrotron

42 s

Since 2×10^{10} c-ions is enough high to complete single-fraction, we have employed the extended FT to save the dead time of synchrotron operation.

- 1. Treatment planning for fast scanning $\Rightarrow \times 5$
- 2. Modification of acc. operation $\Rightarrow \times 2$
- 3. Fast scanning magnet ⇒ ×10

(3) Fast Scanning Magnet

Pos. Moni. Dose Moni

NIRS

(1)+(2)

Total time: 76 s Scanning time: 64 s Range-shifter time: 12 s (1)+(2)+(3)

Total time: 18.5 s Scanning time: 6.5 s Range-shifter time: 12 s

New Treatment Facility (1)

New Treatment Facility (2)

Ground-Breaking Ceremony

New Treatment Facility (3)

1. Introduction

- 2. Heavy-Ion Cancer Therapy Facility
 - Asia
 - Europe
- 3. New Project at HIMAC

4. Summary

- 1) In Asia
 - •HIMAC, Hyogo and IMP facilities have been well going on hadrontherapy
 - •Saga and Kanagawa prefectures just approved the facility construction.
 - China has several plans of the hadrontherapy facility
 - Taiwa also is preparing

2) In Europe

- •HIT facility has completed the full beam commissioning and will start the treatment of 1st patient soon.
- •CNAO facility has been being constructed, and the beam commissioning of the injector has been being carried out.
- •Siemens has constructed Marburg and Kiel facilities and made a contract with Shanghai project
- Lyon and Med-Austron projects will start the construction
- •ARCHADE and INF projects have designed superconducting cyclotron.

Heavy Io Therapy in the World

