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Abstract 
A new method of acquiring fast beam transverse profile 

has been developed and will be used in HLS II. This 
method is based on four signals from MAPMT (multi-
anode photo-multiplier tube) and logarithm processing 
technique. First, the calculation formula of beam 
transversal size and position are deduced using above 
method. Then, the main performances (e.g. sensitivity and 
linearity range) are analyzed. According to stimulation 
result, regardless of cross-talk and inconsistency between 
channels, the size signal has a linear relation with size  
when =0.8-2mm and position =2mm, the position 
signal has a linear relation with position  and the linear 
range exceeds 2mm when =0.8-2mm. With channel 
cross-talk and channel inconsistency being considered, 
the stimulation results also are given. Finally, a fast beam 
transverse profile monitor is designed and provides turn-
by-turn measurement of the beam transverse profile. 

INTRODUCTION 
In order to improve performance and commissioning 

instability of the Electron Storage Ring, it’s necessary to 
study the beam dynamics, beam-beam interaction, etc. In 
these studies, beam transversal parameters change in a 
few turns. Although there have been several schemes, for 
example, beam position monitor (BPM) measurement 
system with turn-by-turn measurement ability [1] and 
beam transverse feedback system with bunch-by-bunch 
measurement ability [2] to measure the change of beam 
centres of mass. They can’t be used to measure turn-by-
turn or bunch-by-bunch transverse beam profile.  

Traditional method of reconstructing transversal beam 
profile is Gaussian fitting [3-4], which needs dozens of 
channels of profile information to be sampled in parallel. 
As a result, costs and complexity are hugely increased. 

This method needs only four electrode signals from an 
MAPMT to acquire beam profile and it has a highly 
precision measurement result after calibrating. 

DIAGRAM OF THE SYSTEM 
The system mainly consists of two parts, one is optics 

system and the other is data acquisition and processing 
system.  

 To catch the profile of the synchrotron radiation light, 
MAPMT with the part number R5900U-00-L16 is used as 
the front-end optical detector. It is a 16-channel linear 
array photoelectric converter characterized by excellent 

response performance with rise time ~0.6ns. Synchrotron 
light is divided to horizontal and vertical directions with 
an optics system and then is received, respectively. Four 
channel photocurrent signals are conditioned by signal 
conditioning circuit before they are sent into a high-speed 
ADC module. In the end, Xilinx Virtex-5 series FPGA 
chip is used to sample discrete data from ADC and 
perform high speed logarithm processing operation. 

The schematic block diagram of the system is shown in 
Fig. 1. 

 
    Figure 1: Block diagram of the system. 

THEORY 
According to the knowledge of the physics of electron 

storage rings, electron radiates synchrotron light when 
passing through the bend-magnetic and the light presents 
a Gaussian distribution in transverse plane. So we assume 
synchrotron light intensity distribution function: 
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Where, Ф0 is the peak light intensity; δ is beam position 
that synchrotron light centre offsets the specified centre of 
the MAPMT; σ is beam size which roughly varies from 
0.8mm to 2mm.  

With the parameters of MAPMT, the synchrotron light 
distribution is shown in Fig. 2. 

 
Figure 2: Light intensity distribution at MAPMT. 

Figure 2 shows that photocurrent from four channels is 
proportional to the integral of light intensity and they can 
be expressed by the subtraction of two error functions 
shown in Eq.2. 
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In ideal condition when the four continuous channel 
electrodes have the same response characteristic, beam 
size signal and position signal are shown in Eq.3.     
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After putting the integral result in Eq.2 into Eq.3 and 
simplifying it, we can obtain how the size signal and the 
position signal vary from size and position. The results 
are shown in Fig. 3 and Fig. 4. 

 
Figure 3: Size signal vs. size and position. 

When δ=0mm and σ=0.2~2mm, size signal has a good 
linear relation with size and the linear fitting equation is 
Sln(σ)=0.03924+0.69σ. When σ=0.8-2mm, position δ has 
an effect on normalized ideal size signal within 1%. 

 
Figure 4: Position signal vs. position and size. 

When σ=0.8-2mm, position signal has a good linear 
relation with position with δ=2mm and size has an 
impact on position signal sensitivity within 1%. 

Calibration 
In practical use, cross-talk and inconsistency between 

channels always exist. So we establish a linear model 
based on the response characteristics of MAPMT to 
simplify and analyze actual photocurrent signals. We 
suppose 1̂I , 2̂I , 3̂I  and 4̂I to represent actual photocurrent 

signals which are integral of light intensity multiplied by 
normalized gain factor gi(i=1,2,3,4). According to Eq.3, 
actual size signal ln

ˆ ( , )S   and position signal ln
ˆ ( , )P    are 

described as Eq.4. 
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In fact, Eq.3 can be viewed as a special case of Eq.4 
when g1=g2=g3=g4=1. In Eq.4, We assume theoretical gain 

correction factor ds= 2 3

1 4
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g g
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According to the simulation result above that position 
has little influence on ideal size signal and it is true for 
size to ideal position signal, so we can get  
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Therefore, Eq.5 becomes the form described in Eq.7. 
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Where, sd and pd  are actual gain correction factors. 

From the Eq.7, we know that actual size signal has a 
remarkable nonlinear relation with size σ; actual position 
signal has a good relation with position δ. After the actual 
gain correction factors are measured, modified size signal 

ln ( , )S   and modified position signal ln ( , )P   can be 

expressed in Eq.8. 
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The process of deducing modified size signal and 
modified position signal is based on the assumption 
shown in Eq.6. In order to prove that the assumption is 
reasonable and effective, we consider the worst case that 
the four normalized gain factor gi(i=1,2,3,4) deviation is 
within 5%, i.e. g1=1.05,g2=1,g3=0.95,g4=1.05 and then 
discuss how much the modified size signal diverges from 
ideal size signal and modified position signal diverges 
from ideal position signal. 
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APPLICATION 
According to the depict above, in the worst case when 

g1=1.05, g2=1, g3=0.95, g4=1.05, the theoretical channel 
gain correction factors of ds is -0.1489 and dp is 0.05129. 

When =0.8-2mm, we can obtain ideal size signal from 
ideal size signal fitting equation. Then with the slope and 
intercept of actual position signal shown in Eq.7 being 
calculated, we can get the actual gain correction factors 
and how the position signal sensitivity varies from the 
size. The results are shown in Fig. 5 and Fig. 6. 

 
Figure 5: Channel gain correction factors vs. size. 

 
Figure 6: Position signal sensitivity vs. size. 

Figure 5 tells us that actual channel gain correction 
factors plotted in red line is almost closed to theoretical 
value and the relative error is within ±0.1% when size 
=1.6mm. And the size will be chosen as the synchrotron 
light size to calibrate the channel difference. 

From Fig. 6, actual position signal sensitivity denoted 
in red approximates to theoretical simulation result, and 
they all roughly equals to 2 when size =0.8-2mm. The 
maximum error is within 0.7%. 

Before channel gain being modified, according to Eq.4, 
we can get how the size signal and position signal change 
with size and position. The results are shown in Fig. 7. 

 
Figure 7: Size signal vs. size and position vs. position. 
From Fig. 7, we know linear range of size signal is 

about 0.2-0.8mm before calibrating. But it presents a huge 
nonlinear relation with size  when size gradually 
increases from 0.8mm to 2mm. The maximum relative 
error is almost up to 20% when =2mm. In contrast, the 
quadratic curve fitting equation is also given.  

On the contrary, position signal presents a good linear 
relation with position even there exists channel difference. 
However, the slope of it deviates from the ideal slope 
with relative error up to 24%, which will cause large error 
without calibrating. 

After actual channel gain correction factor being 
worked out with beam transverse profile measurement 
system [5], then we put them into Eq.8. As a result, we 
can obtain how the modified size signal and modified 

position signal vary from beam size and position. The 
results are plotted in Fig. 8. 

Figure 8 shows that the modified size signal has a good 
linear relation with size and linear range exceeds 1.8mm, 
meanwhile the relative error is less than 0.01% compared 
with ideal linear fitting result when size =0.2-2mm. The 
slope of modified size signal is much closed to ideal slope 
and the relative error is also less than 0.01%. 

 
Figure 8: Modified size signal vs. size and modified 
position signal vs. position. 

According to the simulation result described above, we 
can gather them to obtain the position signal sensitivity 
and size signal linear range on the whole shown in table 1. 
Table 1: Summary of position signal sensitivity and size 
signal linear range in three modes. 

Mode 
Sensitivity 

(mm-1) 
Linear 

range(mm) 

Ideal condition 1.9997 1.8 

Before calibration 2.4826 0.6 

After calibration 1.9999 1.8 

From the result, we know that before calibration, 
position signal sensitivity hugely deviates from the ideal 
fitting result and size signal linear range is only 0.6mm; 
after calibration, position signal sensitivity is almost equal 
to ideal fitting result, and size signal linear range also 
reaches 1.8mm compared with ideal fitting result. So 
calibration greatly improves the measurement accuracy.  

CONCLUSION 
The method needs only four channel electrode signals 

and adopts logarithm processing technique to measure 
turn-by-turn beam transverse profile. It owns a precision 
measurement result that relative error is less than 0.01% 
compared with ideal fitting result after calibrating. 
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