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Abstract

We plan to determine transverse beam emittance and

Twiss parameters for the MAX IV linac using multiple-

quadrupole scans. We investigate the possibility to per-

form such scans using matching section quadrupoles com-

bined with beam profile measurements on fluorescent YAG

screens. Beam pipe size, resolution and screen saturation

limits and strengths of quadrupoles are taken into consider-

ation. Our approach to this problem using a Kalman filter

is presented.

INTRODUCTION

The MAX IV linear accelerator will be a full energy in-

jection linac for two storage rings and at its full energy (3
GeV) it will also provide compressed electron bunches for

a linac based short pulse facility [1]. The linac contains two

bunch compressors: BC1 operating at 264MeV and BC2 at

full energy. Both of these compressors have matching sec-

tions before and after (MS1 to MS4) in which knowledge

of the beam parameters is crucial for operation of the com-

pressors. We aim to perform measurements of Twiss pa-

Figure 1: Illustration of the problem. Determine the beam

parameters (Twiss parameters and emittance) by changing

the strengths of several quadrupoles in the matching section

only by measuring the beam size on the fluorescent screen

near the end of the section. The beam size must stay within

a certain range (in horizontal and vertical plane).

rameters and emittances in each of these matching sections

using the available quadrupoles and a fluorescent screen at

the end of each matching section. Performing this mea-

surement using a simple quadrupole scan is inhibited by

saturation effects for tightly focused beams on the screen

or poor signal to noise ratios for large beam sizes. One can

elegantly circumvent these problems by keeping the beam

size nearly constant while changing the strengths of sev-

eral quadrupoles and performing a least-squares fit (LS) as

presented by Tenenbaum [2]. In this paper we report on
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our approach based on a Kalman filter [3, 4, 5]. We briefly

present the formalism behind LS and Kalman filter (KF),

we describe the way quadrupole values for scanning are

found and in the last section of this paper we show how the

Kalman filter performs in a simulation of MS1 to retrieve

emittance and Twiss parameters.

METHODS

A beam comprised of N electrons with transverse co-

ordinates �vi =(xi,x
′

i) can be (to second order) described

by central moments Σ20, Σ11, Σ02 where Σmn =
1

N

∑
(xi− < x >)m(x′

i− < x′ >)n. If the beam enters a

matching section described by a transport abcd-matrix M

then the new coordinates for each particle are �vi,2 = M �vi.
The covariance-variance matrix given by

Σ =

[
Σ20 Σ11

Σ11 Σ02

]

=

[
εβ −εα
−εα εγ

]

(1)

will then transform during passage through the transport

as: Σ2 = MΣ1M
T . The α, β and γ = 1+α2

β are the

Twiss parameters of the beam and ε the transverse RMS

emittance. Using Σ20 = σ2
x we gather that the beam size

transforms as

Σ20,2 = a2Σ20,1 + 2abΣ11,1 + b2Σ02,1 (2)

Least Squares Method

LS method is based on finding the triplet of

sigmas (Σ20, Σ11, Σ02) that minimizes functional

χ2 =
∑k

m=1

[Σ2

20,2,m
−(a2

m
Σ20,1+2bmamΣ11,1+b2

m
Σ02,1)]

2

δ2
m

for k measurements. The δm are measurement errors as

defined in [2].

Kalman Filter

With a (discrete) Kalman filter it is not necessary to col-

lect all the measurements and then perform a fit of the data.

As an iterative method it allows to update while the infor-

mation is collected. A KF always keeps the same amount

of data, i.e. the collected information does not grow. For

each shot we measure the beam size and estimate its preci-

sion and then invoke the filter to update itself. The update

consists of a prediction (where KF estimates current state

and its uncertainties) and then a correction of the prediction

using the newly available measurements. In general, a KF

is for systems that can be modeled as: x = Ax+Bu+ w
where x is a state vector estimate, A is a state transition

MOPME070 Proceedings of IPAC2013, Shanghai, China

ISBN 978-3-95450-122-9

640C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

06 Instrumentation, Controls, Feedback and Operational Aspects

T03 Beam Diagnostics and Instrumentation



matrix, u is a control vector that directly and linearly in-

fluences the state through the matrix B and w is centered

Gaussian noise with covariance Q. We observe a quantity

z which is linearly connected with the state x through an

observation matrix H by z = Hx + v where v is again

centered Gaussian noise with covariance R. The KF then

operates in the following way [6]:

• Predict the state vector and its covariance P :

x �→ Ax+Bu
P �→ APAT +Q

• Calculate a Kalman gain factor:

K = PHT (HPHT +R)−1

• Correct based on the observed z:

x �→ x+K(z −Hx)
P �→ P −KHP

The state vector and its covariance can be initialized in the

first step (if they are not known) as x = H−1z and P =
H−1R(HT )−1 or they can be provided as a guess (our

case).

For emittance scans we apply the KF using the follow-

ing:

• The unknown state x is a column vector of sigmas at

the entrance to the matching section x = (Σ20, Σ11,

Σ02).

• The matrix A is the identity matrix since we assume

that the input beam parameters don’t change with

time.

• B is zero since we do not control the state. In fact, we

assume the state to be constant since we do not have

control of input Twiss parameters and emittance. We

assume that we have no shot to shot noise (Q = 0) at

the entrance to the matching section.

• We observe the beam size zm = Σ20,2,m. The obser-

vation matrix Hm is given by a row vector Hm =
(a2m, 2ambm, b2m). This can be seen by comparing

z = Hx and equation (2). H changes every time

we change the optics of the matching section.

• For a certain range of measured beam sizes we assume

covariance of measurement R to be a certain percent-

age of the beam size (about 5%). Outside of that range

we increase the covariance continuously but drasti-

cally. Therefore, the KF will take into consideration

measurements of saturated or large beam sizes but un-

certainty of such measurements will be provided to

the filter as being huge. In practice it was noticed that

such points help to reach the correct solution faster (in

fewer shots) but should be sparse enough not to bias

the result.

The reader is referred to [3] for a very nice introduction

into terminology and functioning of the KF.

Preparations

Although it is possible to perform scans by blindly test-

ing random quadrupole values, such a scan can be outper-

formed by a scan where quadrupole values are selected

a priori using the knowledge that is available about the

matching section. Trying to keep the beam size constant, or

within a certain range is obviously beneficial. Alas, we do

not know which pairs of am and bm will result in a certain

beam size since we do not know the input Twiss param-

eters. If we investigate a certain constant beam size (β2

or Σ20,2,m constant), we know from equation (2) that ma-

trix elements am and bm will form an ellipse (non-rotated

if α1 = 0) as in Fig. 2. Dividing the equation (2) by the

Σ02,2 we get a form that does not contain the emittance

and which is a common form of an ellipse:

Aa2 +Bab+ Cb2 = 1 (3)

where A = β1

β2

, B/2 = −α1

β2

and C = γ1

β2

. This ellipse will

have semi-major and semi-minor axes u and v in direction

of the eigenvectors of a matrix W and the lengths of these

axes are λ−1/2 where λ is the corresponding eigenvalue.

The area of the ellipse will be πβ2.

W =

[
A B/2

B/2 C

]

(4)

Figure 2: If the input α1 function is zero the values of a
and b matrix elements of the transport matrix M that keep

the beam size constant on the screen following the trans-

port section will lie on the non-rotated ellipse (left). If α1

is greater than zero the semi-major axis will be in the first

quadrant and the ellipse will be rotated. The area of the

ellipse is always πβ2. Not necessarily all pairs of a and b
can be reached (as indicated on right with some regions of

the ellipse missing the dots). This limitation comes from

limits on magnet strengths, the apertures in the transport

and available phase advance as well as the final beam size

in the orthogonal transverse plane. The orientation and ec-

centricity of the ellipse depends only on α1 and β1.

We can now choose for our scan the values of

quadrupoles that are close to the ellipse that corresponds

to our initial guess of α1 and β1 and desired beam size (we

initialize the script with quadrupoles set so they give a cer-

tain size; this speeds up the process but is not required).
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We would like to get the scan points to surround the origin

as much as possible to increase the quality of ellipse’s re-

construction. Only segments of this ellipse might be avail-

able for the scan depending on the available phase advance

we can achieve in the transport. As the scan progresses

we can update our list of “interesting” quadrupole values

with new sets that would keep the beam size more constant

based on the estimates of Twiss parameters we have so far.

This speeds up the measurement since we do not measure

oversized or undersized beams. To measure how close a

certain point is to the ellipse we use the Mahalanobis dis-

tance. As the scan progresses the measured Twiss param-

eters approach the real values and we also reduce the al-

lowed Mahalanobis distance (we start requiring that the am
and bm deviate very little from the ellipse that is expected

to produce the desired beam size). The list of quadrupole

values also becomes increasingly more accurate and the

beam size on the screen stabilizes. Ideally, once the scan

is complete the beam changes in size only little although

the quadrupole values are changing significantly (going

through different phase advances, or α2). This confirms the

retrieved values of Twiss parameters since we know them

well enough to produce any available desired behavior.

SIMULATIONS

In order to test the KF we wrote a simulation script in

Matlab. The simulation contains a tracking part where

particles are tracked through a matching section to the

screen. The tracking part also adds noise to the set values

of quadrupoles and takes into account DAC values avail-

able for the magnets as well as their apertures and available

strengths. Effects of the screen and camera such as screen

saturation, salt and pepper noise, radiation damaged/dead

pixels, background Poisson noise, camera resolution, dy-

namic range, and point spread function are included. The

analysis part of the script generates lists of quadrupoles val-

ues to test, grabs the image from the tracking part of the

simulation (as if it was getting it from the screen in the real

measurement) and then filters all the noise (without being

provided its characteristics) and measures the beam width.

One run with 50 shots is shown in Fig 3. Every 10 shots

a new list of quadrupole values that should approximately

keep the beam size within the desired range is generated.

The value of β in the vertical plane is slightly under-

estimated and and is also accompanied by a bias in the

emittance estimate. The most likely reason for this is a

bias in the beam size measurement. We hope to address

this issue with further improvements on noise filtering and

beam size measurements. The script could be improved

with a smarter search for quadrupole values, that give cer-

tain a and b, although this mostly concerns the speed at

which the script can run and not its accuracy. A typical run

for 100 shots including simulation of the matching section

presently takes a couple of minutes on average laptop.
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Figure 3: Two Kalman filters estimate Twiss parameters in

matching section 1. Design values serve as initial guess.

On purpose the “true” values have been set significantly

different (α1, β1)x = (−0.3, 4) and (α1, β1)y = (2, 12).
Determined values are: (α1, β1)x = (−0.28, 4.06) and

(α1, β1)y = (1.9, 11.3). The “true” emittance values:

εx = 2.5 · 10−9, εy = 2.3 · 10−9 and determined are:

εx = 2.78 · 10−9, εy = 2.56 · 10−9 m rad.
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