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Abstract
A fast and accurate beam dynamics design code, named

PTCC (Particle Tracking Code in C) is developed to simu-
late particles dynamic in linear accelerators. PTCC solves
the relativistic equations of motion for the macro-particles
when subjected to electromagnetic fields excited in RF cav-
ities. The self-fields of the particles are also part of the elec-
tromagnetic fields through which the particles are tracked.
Self-fields are calculated using a modified 2D cylindri-
cally symmetric mesh based method, making use of beam
and field symmetry to provide fast simulation. The code
has been benchmarked with the well known code ASTRA
which is used mainly in simulations of next generation FEL
linacs. PTCC provides a new tool for designing buncher
section of linear accelerators that convert DC beam into
bunches. New buncher design tool and benchmark results
of PTCC with ASTRA are presented.

INTRODUCTION
Simulation of charged particle dynamics in accelerators

is essential for the design and understanding of these ma-
chines. There are many of particle tracking codes capable
of simulating linear accelerators (e.g. PARMELA [1], GPT
[2] and ASTRA [3]). However, these codes are not open for
modifications or customization, e.g. changing meshing, for
a certain application to adapt to experiment configuration.
Hence, a new code is needed to facilitate design and simu-
lation of different parts of linear accelerators.

EQUATIONS OF MOTION
The best choice for coordinates system for accelerator

code is cylindrical coordinates because of field and shape
symmetry of accelerating cavities and accelerator compo-
nents. Problem of using cylindrical coordinates is it has
singularity at r = 0. The singularity can be handled by
using complex coordinates [4]. The Lorentz equations of
motion in Cartesian coordinates are given by:

d

dt
(γβx) =

q

m0c0
(Ex + c0βyBz − c0βzBy) (1)

d

dt
(γβy) =

q

m0c0
(Ey + c0βzBx − c0βxBz) (2)

d

dt
(γβz) =

q

m0c0
(Ez + c0βxBy − c0βyBx) (3)
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For a vector A with polar position (r, θ), transformation
from Cartesian coordinates is given by:

Ax = Ar cos(θ)−Aθ sin(θ)
Ay = Ar sin(θ) +Aθ cos(θ) (4)

From those equations, the following relations can be easily
derived:

Ax + iAy = (Ar + iAθ)e
iθ

Ax − iAy = (Ar − iAθ)e−iθ (5)

Introducing complex velocity variable βc = βx + iβy and
complex position Rc = x+ iy = reiθ, then by adding Eq.
(1) and Eq. (2) multiplied by i:

d

dt
(γ(βx + iβy)) =

q

m0c0
((Ex + iEy)

−ic0(vx + ivy)Bz + ic0vz(Bx + iBy))

d

dt
(γβz) =

q

m0c0
(Ez − Im{c0(vx + ivy)(Bx − iBy)}) (6)

Using Eq. (5), Eq. (6) can be written in terms of cylindrical
coordinates by:

d

dt
(γβc) =

q

m0c0
((Er + iEθ)e

iθ − ic0βcBz

+ic0βz(Br + iBθ)e
iθ)

d

dt
(γβz) =

q

m0c0
(Ez + Im{c0βc(Br − iBθ)e−iθ})

dRc
dt

= c0βc,
dz

dt
= c0βz (7)

Those equations uses the cylindrical fields components
without introducing any singularities. The equations of
motion are solved using 4th order Runge Kutta (RK4) [5]
solver with fixed time step for γβc and γβz . The fields ~E
and ~B in equation of motion composed of two parts: the ex-
ternal accelerating fields ~Eex, ~Bex and the beam self fields
(Space Charge) ~Es, ~Bs. Both field types are determined
on the cylindrical grid but calculated and entered by dif-
ferent ways. External fields are obtained using an external
field program in the form of a list at specific points on a
2D grid points (r,z). PTCC uses fields (electromagnetic for
cavities and magneto-static for Solenoids) exported from
field solver of Los Alamos POSSION/SUPERFISH suite
[6]. Although Eq. (7) could be used to track particles over
the beam cross section with different initial azimuthal po-
sition θ, due to cylindrical symmetry of the fields, it is suf-
ficient to consider particles at one initial θ, i.e. θ = 0.
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SPACE CHARGE FIELDS
The spacecharge fields (self fields) have to be computed

at each time step of the numerical integration of the rel-
ativistic equation of motion. The spacecharge calculation
is performed similar to space charge model of PARMELA
code as follows:

• Transformation of the particles from the laboratory
frame to the rest frame by Lorentz transformation.

• Beam area is divided into r, z meshes in rest frame.

• Particles then are assigned to grid rings using Cloud-
In-Cell (CIC) model [7].

Figure 1: Ring and quadrature integration.

• Electric field at point (r′ = r, z′) from a charged ring
at longitudinal position s′ with radius ρ and uniform
charge density λ in rest frame (Fig. 1) is given by [8],

E′r =
ρλ

2πε0rd
1
2

(
K(α)− ρ2+(z′−s′)2−r2

d−4ρr E(α)
)

(8)

E′z =
ρλ
πε0

(z′−s′)E(α)

d
1
2 (d−4ρr)

, (9)

d = r2 + ρ2 + (z′ − s′)2 + 2ρr

where ρ is ring radius and (z′ − s′) = γ(z −
s) is the longitudinal distance between ring at s
and observing point (r, z) in ring rest frame, α =√

4ρr/(r2 + ρ2 + (z′ − s′)2 + 2ρr) and K(α) and
E(α) are complete elliptical integrals of the first and
second kinds, respectively [9].

• The fields from ring of charge of cell drdz at point
(r, z′) can be obtained from Eq. (9) and Eq. (8) by
double integration in the ρ-s′ space as

E′z(r, z
′) =

∫ rk+1

rk

∫ z2

z1

E′z(r, z
′)dρds′ (10)

E′r(r, z
′) =

∫ rk+1

rk

∫ z2

z1

E′r(r, z
′)dρds′ (11)

These two integrals are evaluated using numerical in-
tegration using Gaussian Quadrature Integration [10].

• The field contributions of the individual rings are
added up at grid centers. Then, the fields in the labora-
tory frame are obtained using the Lorentz field trans-
formation from rest to moving frame [11],

~E = γ ~E′ − γ2

γ + 1
(~β. ~E′)~β, ~B = γ

~β

c
× ~E′ (12)

• Space charge fields at particles positions are obtained
by simple linear interpolation from grid center points
calculated fields.

BUNCHER TOOL
The most complex design part in linac is the buncher sec-

tion, which is responsible for accepting most of the beam
coming from DC gun, converting it into bunches and ac-
celerating those bunches to relativistic energy. To facilitate
the design of buncher section of Linac, PTCC provides a
buncher tool used to analysis and optimize beam dynam-
ics in the buncher section. PTCC buncher is a 1D design
tool used to track on-axis particle (position, momentum and
energy) in on-axis longitudinal electric field (1D) only us-
ing 4th order Runge-Kutta integrator without space charge
fields (on-axis at r = 0 no radial electric field compo-
nent exist (external or space charge) and longitudinal space
charge field is neglected compared to the applied RF longi-
tudinal field). By changing the buncher cavities dimensions
and using the on-axis field exported from SUPERFISH, the
buncher can be designed.

BENCHMARK OF PTCC
To benchmark PTCC with ASTRA, FNPL (Fermilab

NICADD Photoinjector Laboratory) photo-injector Linac
[12] is simulated using both ATSRA and PTCC. FNPL
accelerator consists of a 1+1/2 cell L-band (f =1.3 GHz)
RF-gun equipped with a high quantum efficiency Cesium-
Telluride photocathode allowing the photoemission of elec-
tron bunches with charge up to approximately 15 nC. The
generated bunches are further accelerated, up to 16 MeV,
by a downstream TESLA-type 9-cells superconducting ac-
celerating cavity operating with an accelerating gradient of
approximately 25 MV/m and operating frequency of 1.3
GHz. Downstream of the TESLA cavity the beam line in-
cludes a set of quadrupoles and steering dipoles elements
for beam focusing and orbit correction. The beamline also
incorporates a magnetic bunch compressor (chicane) which
enhances the bunch peak current up to 2.5 kA.

Figure 2: FNPL accelerator layout.

The longitudinal and transverse phase space from PTCC
is been compared to results from ASTRA simulation till
point before chicane (Figs. 3, 4). Figures 5, 6 show com-
parison of different beam parameters from ASTRA and
PTCC at linac output.
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Figure 3: Transverse phase space at z = 3.77 m.

Figure 4: Longitudinal phase space at z = 3.77 m.

CONCLUSION

A new code that can be used for the analysis and the de-
sign of linear accelerator is presented. Th code simulate the
2D motion of particles along the different parts of th linac.
A simplified version of that code, considering only 1D ax-
ial motion in absence of space charge, can be employed in
designing buncher section of linac system.
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