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Abstract

In this research we formulate and formalize the rules

for the cellular automaton that emulates the motion of the

charged particles beam under the effect of Coulomb force

for one-, two- and three-dimensional cases. In this research

we also describe the main principles of the realization of

this approach in a paralleled cluster environment.

INTRODUCTION

At the present moment cellular automatons are widely

used as a simulating environment for complicated dynamic

systems in various fields of science.

The environment that represents as a cellular automaton

has a lot of opportunities for simulating the interactions

of the manifold of connected homogeneous objects. We

can refer to the sphere of application of cellular automa-

tons: simulating of interacting cellular systems in biology

and medicine, simulating of physical processes in particle

physics and nuclear physics, simulating of hydrodynamic

and gasdynamic flotations etc. [1, 2]. To some detail about

cellular automatons conceptions you can go to [3].

Computer simulation tasks of the evolution of a mov-

ing beam of charged particles in accelerating installations

demand advanced compute resources. For a computation

constriction such models as PIC (Particle-In-Cell) [4, 5, 6],

Large-particle method [7], PCM (Particle Core Models)

[8, 9] etc. are used. These models assume solving of dif-

ferential equations systems for the whole quasi-particle en-

semble. This involves a lot of computations that demand

parallelizing. The models based on cellular automatons can

be successfully realized in parallel computing systems ow-

ing to homogeneous discrete structure of a model. Due to

this fact the idea of using cellular automatons for this class

of tasks of simulating appears to be challenging.

The aim of this research is to formalize the rules of cel-

lular automaton for simulating the motion of a charged par-

ticles beam under its own Coulomb forces and develop the

conception of the parallel realization of this approach.

This formalization of a cellular automaton is based on

the idea of the Particle-In-Cell method [4].
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FORMAL CHARACTERIZATION OF A
CELLULAR AUTOMATON FOR

ONE-DIMENSIONAL CASE
Elementary charged particle pn possesses the following

characteristics: x — grid coordinate, m — particle mass, q
— particle charge, −→v — particle velocity.

Particle beam consists of N identic particles and has

a length L in a moment of time t0 and average velocity−→v avg . For example we place the particles along Ox axis

proportional and at random. We set the initial particle ve-

locity as −→v .

Let’s choose Δt a step (in time) of the cellular automaton

and define its working time in the interval [t0, T ], where T
is the maximal possible value t for this automaton.

Let’s divide coordinate axis Ox into the similar intervals

(we talk about a cell in a cellular automatons theory) Ki =
[xi, xi+1), where xi = iΔx and i ∈ Z. The size of a cell is

chosen as Δx = −→v avgΔt or in any other way.

Let’s formalize the rules of the automaton as an algo-

rithm:

1. Packing a particle as a quasi-particle.

Cell Ki = {pn|xn ∈ [iΔx, (i+ 1)Δx)}. We suppose

that each cell Ki is a quasi-particle that

xKi = iΔx+
Δx

2
, qKi =

∑
pn∈Ki

qpn ,

mKi =
∑

pn∈Ki

mpn ,
−→v Ki =

∑
pn∈Ki

−→v pn

ni
,

where ni is the number of particles in Ki cell.

2. Reckoning of the force acting on a quasi-particle. Let

us assume that
−→
RKi is a final force that acts on Ki

cell.

(a) Neighboring cells influence. One “neighbor”

from the left and one from the right.

−→
RKi =

−→
F Ki+1 +

−→
F Ki−1 ,

where
−→
F is Coulomb forces acting on a cell. In

projection on Ox axis we have

RKi = k
qKiqKi−1

Δx2
− k

qKiqKi+1

Δx2
=

= k
qKi

Δx2

(
qKi−1 − qKi+1

)
,
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where k is a constant of proportionality in

Coulomb law.

(b) The influence of two neighbors from the right

and from the left.

RKi =
−→
F Ki+1+

−→
F Ki−1+

−→
F Ki+2+

−→
F Ki−2 .

RKi
= k

qKiqKi−1

Δx2
− k

qKiqKi+1

Δx2
+

+ k
qKiqKi−2

2Δx2
− k

qKiqKi+2

2Δx2
=

= k
qKi

Δx2

(
qKi−1 − qKi+1

)
+

+ k
qKi

2Δx2

(
qKi−2 − qKi+2

)
.

Coulomb forces are far-ranging but the influence

of M remoter neighbors can be rested on.

(c) The influence of M neighbors from the right and

from the left.

RKi = k
qKi

Δx2

(
M∑
l=1

1

l2
qKi−l

−
M∑
l=1

1

l2
qKi+l

)
=

= k
qKi

Δx2

M∑
l=1

qKi−l
− qKi+l

l2
.

3. Acceleration that Ki cell (quasi-particle) will get is

aKi =
RKi

mKi

,

and the delta of velocity

ΔvKi = aKiΔt.

4. Reckoning of coordinates and velocities of Ki cell

(quasi-particle) at the moment of time t = t+Δt

xKi = xKi + vKiΔt+
aKiΔt

2
,

vKi = vKi +ΔvKi .

5. Unpacking of a quasi-particle into a set of particles.

(a) Unpacking of the particle coordinate in accor-

dance with the previous coordinates

xpKi
= xpKi

+ (xold
Ki
− xnew

Ki
).

(b) Unpacking of the particle velocities with regard

for the proportional change in quasi-particle ve-

locity.

vpKi
= vpKi

voldKi

vnewKi

.

6. The shift of the automaton step with respect to time

t = t + Δt. If automaton does not come out to the

given interval t � T , let’s move to the entry 1.

FORMAL CHARACTERIZATION OF A
CELLULAR AUTOMATON FOR

TWO-DIMENSIONAL CASE
Let’s break up Oxy subspace into square cells Ki,j in

size Δx × Δy, where Δx = Δy, and set the particles by

analogy with one-dimensional case.

The algorithm is identical to one-dimensional case. The

difference is in its dimensionality. The peculiarity of the

algorithm is the reckoning of Coulomb forces for two-

dimensional case. We have all of the same stages fulfilled

by analogy with one-dimensional case.

We reckon Coulomb forces as follows. If the element

interacting with Ki,j stays in place (i − m, j − n) then

squared distance between them can be stated as

r2 = (m2 + n2)Δx2.

Coulomb force projection on Ox and Oy axes can be

stated as

F 1
x = k

qKi,j

Δx2

qKi−m,j−n

(m2 + n2)3/2
m,

F 1
y = k

qKi,j

Δx2

qKi−m,j−n

(m2 + n2)3/2
n.

Taking the account of the aggregate effect of Coulomb

forces of the neighboring cells on quasi-particle Ki,j in

square (2M × 2M) can be described with the following

formula

Rx
Ki,j

= −k qKi,j

Δx2

M∑
m=−M

M∑
n=−M

qKi+m,j+n

(m2+n2)3/2
m,

Ry
Ki,j

= −k qKi,j

Δx2

M∑
m=−M

M∑
n=−M

qKi+m,j+n

(m2+n2)3/2
n,

where m2 + n2 �= 0.

Acceleration, new velocities and coordinates for each

quasi-particle Ki,j are got from the formulae of one-

dimensional case for each of x and y coordinates.

FORMAL CHARACTERIZATION OF A
CELLULAR AUTOMATON FOR
THREE-DIMENSIONAL CASE

Let’s break up the volume Oxyz into cells Ki,j,k in size

Δx ×Δy ×Δz, where Δx = Δy = Δz and set the par-

ticles by analogy with the previous cases. The algorithm

is identical to the previous cases. The difference is in its

dimensionality.

Taking the account of the aggregate effect of Coulomb

forces of the neighboring cells on quasi-particle Ki,j,k in

cube in (2M ×2M ×2M) can be described with formulae

Rx
Ki,j,k

= −k qKi,j,k

Δx2

M∑
m=−M

M∑
n=−M

M∑
l=−M

qKi+m,j+n,k+l

(m2+n2+l2)3/2
m,

Ry
Ki,j,k

= −k qKi,j,k

Δx2

M∑
m=−M

M∑
n=−M

M∑
l=−M

qKi+m,j+n,k+l

(m2+n2+l2)3/2
n,

Rz
Ki,j,k

= −k qKi,j,k

Δx2

M∑
m=−M

M∑
n=−M

M∑
l=−M

qKi+m,j+n,k+l

(m2+n2+l2)3/2
l,
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Figure 1: The distribution of quasi-particles along processors

where m2 + n2 + l2 �= 0.

Acceleration, new velocities and coordinates for each

quasi-particle Ki,j,k are got from the formulae of one-

dimensional case for each of x, y and z coordinates.

PARALLEL REALIZATION
Let‘s state the algorithm for the cases mentioned above.

1. Let‘s proportionally distribute the particles along pro-

cessors PROCn depending on their location. Than

we break up the coordinate domain of particles into

subdomains Dn along one of the dimensions, for ex-

ample on Ox (see fig. 1), so that boarders BORDD

of subdomains D would go through one of the points

x ∈ (Δx · Z),, and every subdomain would contain

approximately equal amount of particles, i.e. to the

processor PROCn ∈ Dn.

2. Let‘s “pack” the particles into the multitude of cells

{K}.
3. Let‘s redistribute the cells K containing the particles

p ∈ K along the processors depending on their lo-

cation by moving the boarders BORDD of subdo-

mains D so that each subdomain D would contain ap-

proximately equal amount of cells K (redistribution is

performed dynamically on every iteration of the algo-

rithm).

4. For the charge reckoning RD of the cells that are sit-

uated closer to the boarders BORDD we need the

value of each cell KD−1 and KD+1 of the neigh-

boring subdomains D − 1 and D + 1. Due to this

fact each processor PROCD interchanges the neces-

sary cell values K between the neighboring proces-

sors PROCD−1 and PROCD+1.

5. For each cell K charge reckoning is performed along

with the reckoning of accelerations, new velocities

and coordinates.

6. After the recomputation of coordinates several cells

can move into the neighboring subdomains. Due to

this fact each processor PROCD performs the inter-

change of such cells into the neighboring processors

PROCD−1 and PROCD+1.

Figure 2: Control flow diagram of the automaton

7. Let‘s “unpack” the cells using the evaluations we

made.

8. If the conditions of the secession from the algorithm

are not observed then let‘s start a new iteration, move

to enter 2.

CONCLUSION
In this research we state and formalize the rules of a

cellular automaton that simulates the motion of elemen-

tary charged particles under their own Coulomb forces for

one-, two- and three-dimensional cases. We also represent

the main principles of realization of this approach in a co-

current clustered environment.
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