
BEAM DYNAMICS SIMULATIONS WITH A GPU-ACCELERATED
VERSION OF ELEGANT∗

K. Amyx, J. Balasalle, J. King, I.V. Pogorelov , Tech-X Corporation, Boulder, CO†

M. Borland, R. Soliday, Argonne National Laboratory, Lemont, IL

Abstract
Large scale beam dynamics simulations can derive sig-

nificant benefit from efficient implementation of general-
purpose particle tracking on GPUs. We present the latest
results of our work on accelerating Argonne National Lab’s
accelerator simulation code ELEGANT, using CUDA-
enabled GPUs. We summarize the performance of beam-
line elements ported to GPU, and discuss optimization
techniques for some core collective effects kernels, in par-
ticular our methods of avoiding costly thread contention.
We also outline briefly our testing and code validation in-
frastructure within ELEGANT as well as a new template
meta-programming infrastructure for streamlining code de-
velopment.

INTRODUCTION
ELEGANT is an open-source, multi-platform code used

for design, simulation, and optimization of FEL driver
linacs, ERLs, and storage rings [1, 2]. The parallel version,
Pelegant [3, 4], uses MPI for parallelization and shares all
source code with the serial version. Several new direct
methods of simultaneously optimizing the dynamic and
momentum aperture of storage ring lattices have recently
been developed at Argonne [5]. These powerful new meth-
ods typically require various forms of tracking the distri-
bution for over a thousand turns, and so can benefit signif-
icantly from faster tracking capabilities. Because the abil-
ity to create fully scripted simulations is essential in this
approach, ELEGANT is used for these optimization com-
putations. ELEGANT is fundamentally a lumped-element
particle accelerator tracking code utilizing 6D phase space,
and is written entirely in C. A variety of numerical tech-
niques are used for particle propagation, including trans-
port matrices (up to third order), symplectic integration,
and adaptive numerical integration. Collective effects are
also available, including CSR, wakefields, and resonant
impedances.

In recent years, general purpose computing on graphics
processing units (GPUs) has attracted significant interest
from the scientific computing community because these
devices offer unparalleled performance at low cost and at
high performance per watt. Unlike general purpose proces-
sors, which devote significant on-chip resources to com-
mand and control, pre-fetching, caching, instruction-level

∗Work supported by the DOE Office of Science, Office of Basic En-
ergy Sciences grant No. DE-SC0004585, and in part by Tech-X Corpora-
tion
† ilya@txcorp.com

vote a much larger amount of silicon to maximizing mem-
ory bandwidth and raw floating point computation power.
This comes at the expense of shifting the burden towards
developers and away from on-chip command and control
logic, and additionally requires relatively large problems
with high levels of parallelism.

Our main goals for this project are (1) to port a wide
variety of beamline elements to GPUs so that ELEGANT
users can take advantage of the high performance that
GPUs can provide, (2) support CUDA-MPI hybrid paral-
lelism to leverage existing GPU clusters, (3) transition EL-
EGANTs build system to the open-source, cross-platform
CMake build system, (4) maintain silent support so that
GPU-accelerated beamline elements are used when possi-
ble without user input such, and (5) provide a framework
and infrastructure that reduces development time and al-
lows developers without CUDA experience to contribute to
ELEGANT.

BEAMLINE ELEMENT PERFORMANCE
In this section we present a list of the particle beam-

line elements fully ported to the GPU, and rough estimates
of their acceleration compared to the reference CPU code,
comparing an NVIDIA Tesla C2070 GPU to an Intel Xeon
X5650 CPU.

Accelerated Single-Particle Dynamics Elements
QUAD and DRIFT: Quadrupole and drift elements, im-

plemented as a transport matrix, up to 3rd and 2nd order,
respectively: nearly 100x acceleration, achieving particle
data bandwidth of 80 gb/s and over 200 GFLOPS in dou-
ble precision.

CSBEND: A canonical kick sector dipole magnet with
exact Hamiltonian (computationally intensive): Nearly 90x
acceleration due to its high arithmetic intensity.

KQUAD, KSEXT, MULT: A canonical kick quadrupole,
sextupole, and multipole elements using 4th order sym-
plectic integration: 20x acceleration (lower arithmetic in-
tensity and higher memory requirements than CSBEND).

EDRIFT: An exact drift element: Less than 20x acceler-
ation (purely bandwidth bound).

RCOL: Rectangular collimator: 10x acceleration if par-
ticles are removed from simulation.

Accelerated Collective Effects Elements
LSCDRIFT: Longitudinal space charge impedance.

Over 50x acceleration using optimized histogram calcula-

parallelism, and instruction cache parallelism, GPUs de-

tion.

, USA
, USA

MOPWO067 Proceedings of IPAC2013, Shanghai, China

ISBN 978-3-95450-122-9

1040C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques



CSRCSBEND: A canonical kick sector dipole with co-
herent synchrotron radiation. Over 65x acceleration using
optimized histogram calculation.

Beamline elements that are at the time of writing in de-
bugging and final optimization stages include the RF cavity
elements and WAKE-based elements.

OPTIMIZATION OF
COLLECTIVE-EFFECTS KERNELS

Most of the collective effects beamline elements in EL-
EGANT utilize a histogram-based approach. Calculating
a histogram on a GPU is very difficult because multiple
threads need to update the same location in memory at
the same time: this leads to thread contention issues that
may cause extreme performance problems (if thread-safe
atomic operations are used) or race conditions (otherwise).
A baseline implementation that creates a sub-histogram in
shared memory per CUDA thread block and which relies
on atomic memory transactions to fill the histogram yields
mediocre performance–roughly 10x of a reference CPU
implementation.

However, we observe the following about any kernel that
relies on atomics to shared memory: atomics to shared
memory are costly, and the cost of such atomics roughly
scales with the level of thread contention. The level of
thread contention is mostly a product of the number of bins
and the resulting distribution. Thus, creating additional
sub-histograms (as memory permits) will reduce the thread
contention and increase the performance, at the negligi-
ble cost of combining sub-histograms in shared memory.
Our optimized kernel utilizes the Fermi GPU’s reconfig-
urable L1/Shared memory cache to prefer shared memory
size, and tries to fit as many sub-histograms as possible per
thread block while maintaining high block occupancy. The
number of thread blocks is limited to the block occupancy
multiplied by the GPU’s number of multi-processors, and
a threadfence()-based reduction combines the results of
multiple thread blocks.

We achieve a performance of 23x over CPU for a wide
range of number of bins (100s-1000s of bins) for millions
of particles, with an effective bandwidth of 24 gb/s–the
same effective bandwidth as a global sum reduction kernel.

Another costly computation that is present in wake-
based collective effects elements is an array convolution
that, if implemented by coding up its definition, scales as
O(N2), with N representing the number of bins in a given
wake file. Given that N is typically in the range from
several hundred to a few thousand, the convolution’s N-
squared scaling indicates that we cannot afford to rely on
the CPU calculation without negatively impacting perfor-
mance of the simulation as a whole, even for millions of
particles.

Our optimized kernel achieves a 40x acceleration by
buffering sub-sections of each array in shared memory and
performing O(bufferSize) computations in shared memory,

thus computing part of the final result for a given array in-
dex. As the convolution is linear, each thread block then
applies an atomicAdd() update to the final result.

FACILITATING DEVELOPMENT
THROUGH TEMPLATE
META-PROGRAMMING

CUDA, NVIDIAs programming language for GPU com-
puting, allows developers to access the raw throughput of
GPUs. Recent versions of CUDA have wide support for
C++ template constructs, which is important because un-
like typical CPU code, GPU kernels must be almost com-
pletely defined at compile-time: run-time polymorphism
is very limited in CUDA. Furthermore, compile-time poly-
morphism allows additional abstraction layers that can hide
the more close-to-the-metal implementation details from
application developers.

We exploit compile-time polymorphism through tem-
plate meta-programming with the following aims:

• Create extendable kernels to ease code maintenance
and reduce programming errors

• Provide data-parallel abstractions that hide CUDA-
specific implementation details

• Ease workflow by avoiding CUDA-related boilerplate
such as thread and block configurations, thread in-
dex computations, conversion to or from array-of-
structures vs. structure-of-arrays data formats , etc

As ELEGANT is fundamentally a particle-based code,
the programming abstraction is based heavily on a GPU
particle accessor class that behaves as though it were a
CPU-style array. Given such an accessor, a developer need
only define a functor that acts on individual particles by
creating a basic class and overloading the proper opera-
tor. Any non-particle data needed by the functor–including
physical constants and auxiliary arrays–is placed in the
classs member variables. The developer then passes the
class to a template GPU driver function and thus replaces
a complicated for-loop over particles with a small functor
class and a call to a GPU driver. No explicit CUDA code
is ever written–only per-particle update classes that clearly
encapsulate what data is needed for each particle update
step.

In situations that involve reductions over particle-
generated data (for example, computing minimum and
maximum particle temporal coordinates), the developer
simply has operator() return a value, and passes a relevant
reduction functor to the template GPU driver (for example,
Add(), Min(), MinMax(), MaxIndex(), etc).

This leads to clean, transparent code, and relies only on
requiring developers to correctly identify variables that are
updated by all particles, rather than variables that can be
scoped as per-particle variables. Furthermore, because we
are generally replacing individual for-loops, MPI-CUDA
hybrid parallelism is maintained.

Proceedings of IPAC2013, Shanghai, China MOPWO067

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

ISBN 978-3-95450-122-9

1041 C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)



TESTING AND VALIDATION
Testing and validating the CUDA implementation to en-

sure accuracy of the results is an essential part of the
project. This is a complicated task, given that the poten-
tial ELEGANT use cases are widely varied, and full cov-
erage of all cases is difficult. In order to validate the code
with a wide variety of use cases, runtime validation of the
CUDA routines is now implemented via a preprocessor flag
(-DGPU VALIDATE=1). Compilation with GPU valida-
tion is not intended for production runs, but rather it is to
be used as an aid in development and as a check for the
user.

With respect to programming details, CUDA function
calls are embedded within the equivalent CPU routines,
such that the CUDA version is used when ELEGANT is
compiled with GPU acceleration. When validation is en-
abled, timings are computed with the CUDA event timers
where, in addition to the CUDA version of the routine, the
CPU routine is also recursively called and timed. The re-
sult from both routines is then copied to the host memory
and compared for accuracy. At the end of the Elegant run,
aggregate timing statistics are displayed for each routine
called.

This run-time testing has several advantages and disad-
vantages relative to unit tests. Unit tests can be quickly run
just after compilation and provide simple test cases for de-
bugging - both advantages over the run-time testing. How-
ever, run-time testing allows for full coverage of possible
use cases and can be more easily integrated within the ex-
isting ELEGANT regression testing system than unit tests.
The implementation of the run-time testing is vastly more
straight-forward than unit testing, as all the element infor-
mation is already present and does not need to be config-
ured by the testing framework.

FUTURE WORK
Once the work on the RF cavity and wake function el-

ements is completed, we will move on to full-scale simu-
lations of realistic lattices (e.g., the APS Ring and LCLS
beam delivery system), so as to gain a better understand-
ing of the GPU-accelerated version’s performance in the
large-scale real-world simulations and inform further op-
timization efforts. With our template meta-programming
infrastructure and our validation and testing infrastructure
in place, the bulk of our future work relates to porting addi-
tional beamline elements to GPU. Once sufficient elements
are ported to the GPU and validated, we plan to merge our
GPU-enabled version of ELEGANT into Argonnes main
ELEGANT source code, allowing users worldwide access
to significantly accelerated serial and parallel versions of
ELEGANT.

ACKNOWLEDGEMENTS

This work was supported by the US DOE Office of Sci-
ence, Office of Basic Energy Sciences under grant number
DE-SC0004585, and in part by Tech-X Corporation, Boul-
der, CO.

REFERENCES
[1] M. Borland, “elegant: A Flexible SDDS-compliant Code for

Accelerator Simulation”, APS LS-287, September 2000

[2] M. Borland, V. Sajaev, H. Shang, R. Soliday, Y. Wang, A.
Xiao, W. Guo, “Recent Progress and Plans for the Code
ELEGANT,” in Proceedings of 2009 International Compu-
tational Accelerator Physics conference, San Francisco, CA,
WE3IOpk02 (2009)

[3] Y. Wang, M. Borland. “Implementation and Performance of
Parallelized Elegant”, in Proceedings of PAC07, THPAN095
(2007)

[4] H. Shang, M. Borland, R. Soliday, Y. Wang, Parallel SDDS:
A Scientific High-Performance I/O Interface, in Proceedings
of 2009 International Computational Accelerator Physics
Conference, San Francisco, CA, THPsc050 (2009)

[5] M. Borland, V. Sajaev, L. Emery, and A. Xiao, “Direct
Methods of Optimization of Storage Ring Dynamic and Mo-
mentum Aperture”, in Proceedings of PAC09, TH6PFP062
(2009)

MOPWO067 Proceedings of IPAC2013, Shanghai, China

ISBN 978-3-95450-122-9

1042C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques


