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Abstract

The damped sinusoid equation is a common model for 
many scientific processes involving damped periodic 
signals. Here we present two methods for estimating the 
damped sinusoid parameters for noisy signals. Both 
methods are based upon an exact,  closed form solution to 
fit the parameters for signals without noise, and they 
estimate the parameters for the noisy signals by the 
statistical maximum likelihood criterion.  The first method 
relies on an optimizer to minimize the mean square signal 
error. The second method estimates the parameters by 
direct calculation and is suitable when the signal noise is 
small and the frequencies are sufficiently far from the 
integer and half integer values.

INTRODUCTION
The damped sinusoid equation with regularly spaced 

signals is often used to model physical phenomena 
involving damped periodic signals. For example, at the 
Spallation Neutron Source (SNS) in Oak Ridge, the beam 
position monitors in the accumulator ring [1] provide 
waveforms of turn by turn beam position signals. These 
waveforms provide information about the beam dynamics 
for directly determining the tune and closed orbit and 
indirectly for measuring the Courant-Snyder beta function 
[2] and the momentum spread. Since the damping of the 
signals is dominated by decoherence due to chromaticity 
and the synchrotron period is long compared to the 
storage time,  the actual signals are better modeled using a 
gaussian damped sinusoid equation. However, for fitting 
the tune, phase, amplitude and closed orbit, the 
exponentially damped sinusoid is a sufficient 
approximation under suitable conditions, and can be used 
for priming a gaussian damped sinusoid fit.

Equation 1 shows the general form of the exponentially 
damped sinusoid with amplitude α, growth rate λ, angular 
frequency µ,  phase φ and offset b. The waveform signal qn 
is evaluated at the index (often associated with time) 
given by the integer, n.

 qn =α eλn sin µn + φ( ) + b  (1)

Common approaches to fitting waveform data to a 
damped sinusoid include adaptations of Prony’s method 
[3] and differential algebra [4], but neither of these 
approaches solve the problem as stated. A search of the 
literature indicates a lack of a closed form method to 

directly fit a waveform of discrete, evenly spaced signals 
to a damped sinusoid regardless of whether noise is 
present. This paper presents a derivation of a closed form 
solution to the problem that is used as the foundation of 
two parameter estimation methods for noisy signals. 

EXACT PARAMETER FIT
The exact, closed form solution fitting waveform 

signals to the damped sinusoid when there is no noise is 
derived here. The damped sinusoid is recast in equation 2, 
and the parameters of equation 1 are recovered later.  For 
consistency with code, zero based indices are used. 

 qn = A cos µn + B sin µn( )eλn + b  (2)

After some algebra, one obtains the equation:

 cosµ =
qn − b( )eλ + qn+2 − b( )e−λ

2 qn+1 − b( )  (3)

Since this equation for the frequency is true for any 
three consecutive signals, equating the solutions for two 
consecutive sets of three signals and solving for the 
growth factor yields:

 e2λ =
qn+3 − b( ) qn+1 − b( ) − qn+2 − b( )2
qn − b( ) qn+2 − b( ) − qn+1 − b( )2

 (4)

Since the growth factor is independent of n, we equate 
it for two consecutive sets using the following definitions.

 
un ≡ 2qn+1 − qn − qn+2
vn ≡ qnqn+2 − qn+1

2  (5)

This substitution yields the following relation.

  

0 = un+1
2 − un un+2( )b2

+ 2un+1 vn+1 − un vn+2 − un+2 vn( )b
+ vn+1

2 − vn vn+2

 (6)

To simplify the expressions,  the following definitions are 
made for the coefficients of the quadratic equation.

 

Rn b
2 + Sn b + Tn = 0

Rn ≡ un+1
2 − un un+2

Sn ≡ 2 un+1 vn+1 − un vn+2 − un+2 vn
Tn ≡ vn+1

2 − vn vn+2

 (7)
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Combining two quadratic equations (for n and n+1) and 
eliminating the quadratic term yields the following 
equation for the constant offset, b.

 b = Rn Tn+1 − Rn+1 Tn
Rn+1 Sn − Rn Sn+1

 (8)

This offset can be fed to equation 4 to recover the 
growth factor which subsequently can be used in equation 
3 to recover the frequency.

The cosine and sine amplitudes of equation 2 can be 
computed by applying the equation twice (once for n and 
once for n+1) and solving for the unknown amplitudes. 
Performing algebra and applying some trigonometry 
yields the solution for the sine amplitude, B.

 B =
qn+1 − b( )e−λ n+1( ) cosµn − qn − b( )e−λn cosµ n +1( )

sin µ
 (9)

The solution for the cosine amplitude, A is as follows.

 A =
qn − b( )e−λn − B sin µn

cosµn
 (10)

The amplitude in equation 1 is recovered as:

 α = A2 + B2  (11)

The tangent of the phase is A over B, and the signs of 
these two amplitudes determines the quadrant with the 
phase determined uniquely in the range -π to π.

 tanφ = A / B  (12)

MAXIMUM LIKELIHOOD ESTIMATION
Equation 1 can be recast to include the signal errors.

 qn + εn = A cos µn + B sin µn( )eλn + b  (13)

Updating equation 3 and rearranging terms leads to the 
following recursion for signal errors.

 
εn+2 = 2e

λ cosµ qn+1 + εn+1 − b( )
− qn + εn − b( )e2λ + b − qn+2

 (14)

For independent, random and normally distributed 
signal error with a common variance (conditions 
consistent with the application to beam position 
waveforms in our accumulator ring), the fit of maximum 
likelihood minimizes the penalty function which is the 
sum of the square of all the signal errors [5]. 

Since the recursion for each error is linear in the two 
previous errors,  the error for any waveform element can 

be expressed as a linear combination of the first two 
errors.

 εn = fnε0 + gnε1 + hn  (15)

Substituting this equation into the recursion equation 
for errors, yields a recursion for the coefficients.

 

fn = 2eλ cosµ fn−1 − e
2λ fn−2

gn = 2eλ cosµ gn−1 − e
2λgn−2

hn = 2eλ cosµ hn−1 − e
2λ hn−2 + b − qn

+ 2(qn−1 − b)eλ cosµ + (b − qn )e2λ

f0  = 1, f1  = 0, g0  = 0, g1  = 1, h0  = h1  = 0

 (16)

Using this recursion equation for coefficients, the 
penalty function (mean square signal error) can be 
expressed over the N signals as:

 P = 1
N

εn
2

n=0

N−1

∑ = 1
N

fn ε0 + gn ε1 + hn( )2
n=0

N−1

∑  (17)

The penalty function is minimized in the standard way. 
The first two signal errors can be solved explicitly.

 ε0 =
hngn fngn

n=0

N−1

∑ − gn
2

n=0

N−1

∑ fnhn
n=0

N−1

∑
n=0

N−1

∑

fn
2

n=0

N−1

∑ gn
2 − fngn

n=0

N−1

∑
n=0

N−1

∑
 (18)

 ε1 =
hn fn fngn

n=0

N−1

∑ − fn
2

n=0

N−1

∑ gnhn
n=0

N−1

∑
n=0

N−1

∑

fn
2

n=0

N−1

∑ gn
2 − fngn

n=0

N−1

∑
n=0

N−1

∑
 (19)

The five parameter search space of the damped sinusoid 
has been reduced to three (frequency, growth factor and 
offset). An optimizer can be used to search just this 
parameter space to minimize the penalty function.

DIRECT PARAMETER ESTIMATION
A direct method is sought to efficiently provide fits 

without the need for an optimizer. Generally, the value for 
a k indexed parameter, ξk, can be expressed as a function, 
θk of the sample, s, and the noisy signals.

 ξk = θk (s,q0 + ε0 , ...qN−1 + εN−1 )  (20)

If the signal errors are small and the function is well 
behaved (continuously differentiable with respect to the 
signals over the region of interest), the function can be 
expanded to first order in the signal errors resulting in an 
approximation of the parameter.
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 ξk ≈ θk (s,q0 , ...qN−1 ) +
∂θk (s,q0 , ...qN−1 )

∂qn
εn

n=0

N−1

∑  (21)

Assuming purely statistical signal errors, we can take 
the expectation value of the square error of the fit and 
solve for the variance of the signal error to first order over 
all samples. In the vicinity of the best parameter fit, the 
following penalty function approximates the signal error 
variance where Ns is the number of samples.

 Pk =
1
Ns

ξk −θk (s,q0 , ...qN−1 )( )2
ρkss=0

Ns−1

∑  (22)

Here, the following definition has been made and referred 
to as the “estimation sensitivity.”

 ρks =
∂θk (s,q0 , ...qN−1 )

∂qn

⎛
⎝⎜

⎞
⎠⎟

2

n=0

N−1

∑  (23)

The penalty function is as expected from standard error 
analysis. The best estimate of the parameter minimizes 
this penalty function and is calculated to be the weighted 
mean over the samples where the weight is the estimation 
sensitivity.

  ξk ≈

θk (s,q0 , ...qN−1 )
ρks

⎛
⎝⎜

⎞
⎠⎟s=0

Ns−1

∑
1
ρkss=0

Ns−1

∑
 (24)

This parameter estimation formula is quite general and is 
useful if the signal errors are sufficiently small as 
quantified by standard error propagation.

The exact parameter fit equations derived earlier can be 
used to explicitly calculate the parameters of the damped 
sinusoid for a given sample and are suitable as parameter 
functions for the parameter estimation equation. This 
method requires the first order differentials with respect to 
the waveform signals to be calculated. Due to the 
complexity of the parameter estimator for an individual 
sample, a Java class in XAL [6, 7 ] was developed to 
calculate the exact first order differentials. It has methods 
to efficiently propagate the first derivatives for several 
mathematical operations including all operations required 
for this problem.

Care must be taken to avoid estimation failure for 
sensitive conditions. The growth factor must be positive, 
and any sample resulting in a negative growth factor is 
removed. If the best fit for the cosine of the angular 
frequency is less than negative one, the angular frequency 
is set to π, and if it is greater than one,  it is set to zero. The 
presence of a sine of the angular frequency appears in the 
denominator of the sine amplitude, B,  which is 
catastrophic at the bounds. To avoid catastrophe, B is set 
to zero near these frequencies which has the effect of 
ignoring the sine like contributions which approach zero. 

As the frequency approaches an integer or half integer, the 
estimation fails since the cosine term approaches its 
limits. At zero frequency there is a degeneracy since the 
phase and amplitude become indeterminate.

This direct method was coded into a Java class in XAL 
to provide fast estimation and to prime the least squares 
optimizer with initial values if better accuracy is desired. 
The direct method calculates the exact fit when the noise 
level is zero.

CONCLUSION
An exact, closed form solution to compute the 

parameters of a damped sinusoid from error free 
waveform data was derived. This solution was adapted for 
an efficient method to directly estimate the frequency, 
offset,  growth rate, amplitude and phase from noisy 
signals. This direct method can be used alone when 
realtime analysis is appropriate and the noise is low and 
the frequency is sufficiently far away from integer and 
half integer values. For greater accuracy, the direct 
parameter estimations can be used to prime an optimizer 
that minimizes the sum of the square of signal errors 
using an efficient recursion to calculate these errors.
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