
!CHAOS HISTORICAL ENGINE

M. Mara, A. Paoletti, INFN-AC, Frascati, Italy
C. Bisegni, G. Di Pirro, L.G. Foggetta, G. Mazzitelli, A. Stecchi, INFN-LNF, Frascati, Italy

L. Catani, INFN-Roma2, Rome, Italy

Abstract
!CHAOS is an INFN project aimed at creating the

communication framework and the services needed for
the definition of a new control system standard, mainly
addressed to large experimental apparatus and particle
accelerators. !CHAOS is under test at DAFNE accelerator
and has been developed to overcome the strong
requirements throughput of new accelerators, like superB.
One of the main components of the framework is the
historical engine (HST Engine), a cloud-like environment
optimized for the fast storage of large amount of data
produced by the control system’s devices and services
(I/O channels, alerts, commands, events, etc.), each with
its own storage and aging rule. The HST subsystem is
designed to be highly customizable, such to adapt to any
desirable data storage technologies, database architecture,
indexing strategy and fully scalable in each part. The
architecture of HST Engine and the results of preliminary
tests for the evaluation of performance are presented.

THE TECHNOLOGY BEHIND THE HST
ENGINE

The !CHAOS framework has been designed giving a
sight to the software technology emerging from the
development of the new Internet services, non-relational
databases (NRDB) and distributed caching system (DCS).
Both allow a high level of horizontal scaling allowing the
insertion and retrieval of the data as fast as possible,
trying to saturate all the available bandwidth an all the
network connections of the subsystem.

While the NRDB logics and techniques are used to
achieve the indexes management and fast data retrieval,
the DCS instead is used to achieve “live data sharing”, a
scalable system to share the real-time device data. This
software provides in-memory key/value storage and
permits fast multiple accesses on the same key by many
requesters. For this reason, the usage of this cache is one-
write (the device that update its data on cache) and
multiple-reader (the user interface or algorithm that need
to fetch device output channels). This permits to remove
the load caused from multiple access reading from the
host that controls the device.

These two software technologies represent the core
components in the design of the new control system
named !CHAOS [1] (i.e. “not” CHAOS, as the logical
negation in many programming languages, where
CHAOS stands for Control system based on Highly
Abstract Open Structure) [2, 3, 4].

In !CHAOS architecture, the Front End Controllers
(FEC) push acquired channels and alarm data into both
live and history data cloud (DC), which means that data
collection mechanism is inherently included in the
!CHAOS communication. The user interfaces or
controlling algorithms can obtain hardware data, from the
DC, issuing a “get” command or registering into the push
data services of the DC. The use of “get” command
permits to regulate the effective refresh rate needed by
every node, the push service instead, forwards the data at
the same rate as it is pushed into the DC.

Figure 1: How the !CHAOS Data Cloud interacts with the
other components.

The data payload sent by the front-end controller into
the DC is serialized using the BSON spec[5]. By
construction, the channel and alert description are
considered using the maximum dimension that their
values can have. Also the positions of the channel (within
the payload) are observed between different push
operations. In this way the BSON payload never changes
its structure, but only the channels and alerts value
changes. Within these considerations we can decide to
update the entire payload (if needed), or his sub part. This
permits to scale down the data bandwidth needed to

THPEA006 Proceedings of IPAC2013, Shanghai, China

ISBN 978-3-95450-122-9

3158C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

update the current device state into the DC.

All others parameters of !CHAOS infrastructure, such
as data refresh rates, as well as other meta-data,
configurations, commands and data syntax and semantic
etc. are managed by the Meta-Data Server (MDS). It
permits to manage where a FECs needs to push data and
help the other nodes to find FECs IP for sending RPC
commands. All kind of nodes are managed by this central
repository. The MDS has an important role also regarding
the access to the Storage subsystem: it stores the logic and
data used by the FECs and user interfaces to identify the
appropriate access point to the Cloud. Thanks to this
information a first level load balancing is already done
before accessing the Data Cloud.

!CHAOS HISTORICAL ENGINE
In !CHAOS the data storage is provided by the service

called History (HST) Engine. This conceptual design will
allow an innovative storage system for a Distributed
Control System, giving !CHAOS an important technology
advantage against other equivalent most popular standard
for controls. The main ideas at the base of the data
acquisition process are the following: a distributed file
system is used to store data produced by machine
operations while a KVDB manages the indexes structure
(nowadays candidates are Hadoop [7] and MongoDB [8]
respectively). These tools have been chosen thanks to
their diffusion in the scientific community for solving
similar problems and the abundance of use cases to which
learn from. The functionalities of the !CHAOS HST
Engine are allocated to three dedicated components, or
nodes, namely the !CHAOS Query Language (CQL)
Proxy, the Indexer and the Storage Manager.

 Figure 3 shows the data flow and the role of the before
mentioned nodes in data writing (red) and
reading/querying operations (green). Grey lines are used
to indicate internal actions and data flow.

A Control Unit (CU), FEC !CHAOS process, starts the
writing process by sending a dataset to the CQL Proxy
indicated from the MDS, as its primary HST server (1).
The CQL Proxy has the role of an access point to the
storage subsystem, hiding all the complexity of data
storing to the user. Upon receiving the package, the proxy
interprets the CQL command and starts the data flow
inside the Storage infrastructure. To ensure multi write
capabilities to the entire system a Cache mechanism has
been chosen: all the packets received are pushed inside a
common area (2) structured as follows. For each CQL
Proxy a logical file is allocated inside the distributed FS,
once a determined size has been reached the file is marked
as “closed” signaling the storage manager to move the
packets from the actual cache file to the producer device
file inside the file system (3). This method allows to
improve the writing capability of the system by increasing
the number of proxies writing at the same time inside the

cache. It is necessary to introduce appropriate policies
allowing packets reordering inside the file system. Every
logical file related to a data producer is time ordered at
any time, the storage system for each device maintains the
information containing the latest packet stored in the file
system, if the cache subsystem receives an “old” packet,
not yet stored, adequate procedures are implemented to
ensure the time contiguity inside the device logical files.
When moving the packets inside the device logical files,
the system updates, for each device, the latest useful
timestamp effectively stored in the file system, giving the
data consumers a semi real time information about the
packets readable from the Cloud.

Figure 2: The !CHAOS multi-write idea.

Figure 2 shows the idea behind the multi-write caching
design, it permits to minimize the collision of the data
packs into a single proxy, an algorithm based on the
default push rate of every CU, performs the load
balancing between data producers and Proxies. Every
proxy can dynamically allocate multiple threads and for
each thread a lock free queue is created. Here are inserted
the data packets obtained by the proxies, every thread is
responsible for consuming the data inside its queue by
moving them inside the proxy associated cache file.

The cache garbage collection mechanism is obtained
thanks to this feature, all the proxy files containing
packets already available on the Cloud, and marked as
closed, are removed from the file system, ensuring the
resources reuse as soon as they become available again.
Both the cache files and the device logical files are stored
inside a distributed file system, at the moment Hadoop
seems the best option. Hadoop is a distributed file system
that provides high throughput access to data, it
automatically replicates the data in the other servers of the
cluster (grey lines) ensuring a full redundancy of the
system. Once the data has been stored, the CQL Proxy
informs the pool of Indexer nodes about the new entry (4)
and the first available Indexer appends the task to its
queue. When processing the entry, the Indexer first reads
the packet (i.e. the dataset) from the first available
Hadoop node (5), analyzes it and, according to the
indexing rules, updates the corresponding indexes on the
MongoDB (6). The default indexing strategy will be by

CU_1

CU_N

CQLProxy

pack
queue

cache
file

Thread_1

cache
filecache
file

pack
queue

cache
file

Thread_n

cache
filecache
file

CQLProxy

pack
queue

cache
file

Thread_1

cache
filecache
file

pack
queue

cache
file

Thread_n

cache
filecache
file

Proceedings of IPAC2013, Shanghai, China THPEA006

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

ISBN 978-3-95450-122-9

3159 C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

chronological order, i.e. based on the timestamp and
bunch/packet number within timestamp intervals. The
indexing procedure allows a faster retrieve of the stored
data by providing two different Indexes, the Time
Machine Index (TMI) and the Value Based Index (VBI).
The TMI is the default index in !CHAOS, because all the
acquired data can be placed in a continuous time line in
which the acquisition time can act as a primary key for all
the data fetched by a single device. The TMI is intended
as multilevel and allows choosing the desired granularity
for every query forwarded by the proxies. The second
index, based on the values of the data stored, will be
available only on demand, allowing to retrieve particular
data patterns like spikes or results of a chosen indexing
function.

Queries to HST are triggered from client applications by
sending a CQL command (1) to the proxy with the highest
priority in its list. The proxy node decodes the request and
passes it to the first available Indexer (2) that in turn, by
querying the Indexes DB, receives the coordinates of data
packets (3) satisfying the query’s conditions (like data
packets within a certain time interval, or data packets that
reflects a particular pattern) and sends them to the CQL
Proxy (4). The packages are then collected (5) from
various FS Servers and sent (6) to the client.

It is worth mentioning that since responses to queries

are asynchronous and tasks can be distributed among
different proxies, data packets resulting from a query can
be provided to the client application also by other CQL
Proxies different from the one that originally received the
request, allowing to improve the responsiveness of the
whole subsystem.

Thanks to the chosen implementation, it is possible to
increase the overall performance of the system by scaling
different components. A faster writing mechanism for the
devices can be ensured by increasing the number of
proxies writing in a parallel way inside the cache. The
transfer process between cache and device logical files
can be increased by incrementing the number of managers
checking the packets acquired; the indexing procedure can
be improved by increasing the number of indexer nodes.

The tests on this conceptual design will be executed by
creating a software simulation of the FECs writing
mechanism, each step, from the production of data to the
write inside the file system will be analyzed scaling the
numbers of threads, workers, and indexer nodes. The data
obtained will show if the multiple redundancy and
parallelization of the components allow to improve the
performances of the system even if the data produced by
the FECs is increased. The effective results will come in
few months thanks to the collaboration with student of
various Italian universities.

Figure 3: The !CHAOS Storage Infrastructure event list.

REFERENCES
[1] http://chaos.infn.it
[2] L. Catani et.al., “Introducing a new paradigm for

accelerators and large experimental apparatus control
systems”, Phys. Rev. ST Accel. Beams 15, 112804
(2012).

[3] G. Mazzitelli et.al., “High Performance Web
Applications for Particle Accelerator Control

Systems”, Proceedings of IPAC2011, San Sebastian,
Spain, pp.2322-2324, http://www.JACoW.org

[4] L. Catani et.al., “Exploring a New Paradigm for
Accelerators and Large Experimental Apparatus
Control Systems”, Proceedings of ICALEPCS2011,
Grenoble, France, http://www.JACoW.org

[5] http://bsonspec.org
[6] http://msgpack.org ���
[7] http://hadoop.apache.org
[8] http://www.mongodb.org

THPEA006 Proceedings of IPAC2013, Shanghai, China

ISBN 978-3-95450-122-9

3160C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

