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Abstract 
A database for model data is design for the Facility for 

Rare Isotope Beams (FRIB) Project. The database schema 
design takes most general approach which is not limited 
to FRIB models. Programmatically access to the database 
can be done through a set of Application Programming 
Interfaces (APIs). Initial data population demonstrates 
that the database is suitable for XAL application 
framework [1]. The model database is also part of 
collaboration for complete database needs among various 
data domains across an accelerator. 

INTRODUCTION 
High-level applications for accelerator control are often 

based on physics models which require various data for 
the calculation.  FRIB physics application architecture 
shown in Fig.1 as an example, starting from left-hand side 
an offline modelling code with a given lattice computes a 
model; both the computed model and lattice settings are 
then saved in a lattice/model database which is part of a 
global database; a model service then servers up model 
data by either extracting offline model data from the 
database or computing online machine model in real-time.  
Physics applications, as clients of the model service, can 
then carry out machine tuning based on the model data 
provided by the service.  With this software architecture 
design, database and its data service is vital for physics 
applications.  This paper will report the lattice and model 
database design and the progress for the associated data 
services. 

LATTICE AND MODEL DATABASE 
DESIGN 

A global database which covers many domains of an 
accelerator including lattice, model, magnet 
measurement, survey and alignment, and machine setting 
save set, is under development. The global database 
development is a collaborative effort among different 
institutions.  In order to distribute development effort 
among several collaborative institutes, it is necessary to 
divide the entire global database into domains.  The lattice 
and model database domain provides coverage for any 
lattice and model data storage needs.  Because the lattice 
data and model data are tightly coupled, they are 
developed as one single domain module.  The lattice and 
model database design is mainly according to the data 

storage needs, usefulness for physics applications, 
flexibility of various modelling tools and standardized 
data access API.  The global database design is based on 
the Integrated Relational Model of Installed Systems 
(IRMIS) [2].  

 
Figure 1: FRIB physics application architecture. 

Data Coverage for Lattice and Model Database 

 
Figure 2: Lattice and model database schema. 

 
Lattice and model database can hold 1) lattice data 

which is a layout along the beamline plus a set of active 
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device settings with optional diagnostic devices; and 2) 
model data which is the result of physics simulation for a 
particular beam running through a lattice. There are a 
total of 19 tables for the lattice and model database which 
can hold any number of lattices and model data sets, and 
link to the installation database domain which may 
contain controls information for devices.   

The schema has a “gold lattice” table and a “gold 
model” table to keep track of default lattices and models 
for each beam-line and machine mode.  The API signature 
for accessing default lattice is based on physicists’ point 
of view, e.g. getDefaultLatticeForbeamline(“a_line”) is 
the API for obtaining the default lattice for a beamline. 
For non-default lattices, a unique database set 
identification (ID) number is required in the API. 

Brief description for each database table is below: 
 Beam Parameter: A link table between an element 
and the beam properties such as Twiss Parameters at 
the element. 
 Beam Parameter Property: Individual beam 
parameter for each element.  This table is in property 
name-and-value pair format so it can accommodate 
any modelling tool’s outputs. 
 Beamline Sequence: Typically an accelerator is 
divided into multiple beamline segments for physics 
tuning and modelling convenience reasons.  This 
table records the information for each individual 
beamline segment. 
 Beamline Sequence Lattice: A link table between the 
Beamline Sequence table and the Lattice table. 
 Element: Information for each modelling element 
including misalignment. 
 Element Install Device: A link table between the 
lattice and model database domain, and the 
installation/configuration database domain. 
 Element Property: Element properties for each 
element. 
 Element Type: Definition for modelling element 
types.  
 Element Type Property: Common properties for a 
given element type. 
 Gold Lattice: Track records for current gold (or 
default) lattices and previously tagged as gold 
lattices. 
 Gold Model: Track records for current gold (or 
default) models and previously tagged as gold 
lattices. 
 Lattice: General information for a lattice. 
 Machine Mode: Examples for machine mode are 
“design”, “extant”, and “user-defined”. 
 Model: General information for a model. 
 Model Code: Modelling code and its algorithm 
information. 
 Model Geometry: Geometry information for a 
model. 
 Model Line: Information about the start and end 
elements for a given model.  A model line can 
contain multiple beamline sequences. 

 Particle Type: Particle species used in model 
calculation. 
 RF Gap: Specific information about RF accelerating 
gaps.  RF cavities are the modelling elements and 
RF gaps are structures within an RF cavity. 

So far, the lattice and model database schema can 
accommodate all data needs.  However, further 
performance and storage efficiency optimization is 
needed. 

Properties Stored as Name/Value Pairs 
The lattice and model database stores property name-

and-value pair in the database to accommodate various 
modelling tools’ needs.  The name/value pair approach is 
in contrast to the conventional way of using the property’s 
name as the database table column label.  If a new 
property is introduced or a property name is changed, one 
has to modify the conventional database and consequently 
the affecting data access API(s).  Such tedious 
maintenance can be avoided with the property name-and-
value pair approach.  Also, property name/value can 
accommodate various properties from different modelling 
tools. 

Data Link among Domains 
Some of the data saved in other domains of the global 

database are needed for physics model computation.  
There are a couple of ways to link the data across 
domains.  First, using primary/foreign keys between 
database tables can avoid data duplication.  However, this 
approach may result domains tightly bounded with data 
dependency and cannot be deployed independently.  
Alternatively, each domain maintains self-contained data 
sets with software services as the interface for accessing 
multiple domains to provide a complete set of joint query.  
The latter is, however, at the price of potential data 
duplication and inconsistency.  It depends on the situation 
whether using database table linkage or service interface. 

DATA PREPARATION 
As shown in Fig.1, typically lattice is designed with 

offline simulation modelling tools.  Each offline 
modelling code has its own format and, therefore, very 
difficult to write a universal data upload program for 
various modelling codes. 

Standard Spread Sheet for Lattice Data Upload 
A complete set of design lattice can be uploaded with a 

batch data upload program.   
 Beamline Sequence – Breaking the entire accelerator 
into segments suitable for physics modelling and 
beam tuning purposes. 
 Elements – A spread sheet contains a flat list of all 
modelling elements with information such as names, 
locations, effective lengths, and nominal settings. 
 RF Gaps – RF accelerating gap data special for 
XAL, e.g. gap electric-to-geometrical centre offset, 
and end-cell indicator.   
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 Beam Initial Conditions – Beam initial condition 
(particle type, rest mass, charge, beam intensity, 
phase space coordinates, and Twiss Parameters) for 
each beamline segment. 
 Name Mapping – Name mapping between physics 
names and engineering names used for control 
purpose. 
 Device Types – Defining device types according to 
site specific naming convention document. 
 Device-model Types – Defining how to model a 
given device type, e.g. dipole correctors can be 
modeled as either thin lens or thick lens, device type 
“DH” can be modeled as Bend in XAL or sector 
bend in MAD. 
 TTF Curves – Transit-time Factor (TTF) curves, a 
polynomial curve fit program fits the curves and the 
fitted polynomial coefficients are saved in database 
with corresponding RF cavities. 

LATTICE AND MODEL API 
Typically, accessing data in a relational database is 

done through Sequential Query Language (SQL).  
However, it is not intuitive for physicists to use SQL.  
Also, application software written in modern 
programming language often uses object-oriented 
approach.  An object to relational mapping (ORM) API 
can facilitate the database query.  Java Persistence API 
(JPA), which is included in the Java Enterprise Edition 
Version 2 (J2EE), is chosen as the ORM tool.  A set of 
data API based on JPA is written for easy database access.  
In addition, database applications and services can take 
advantage of the data API.  A proof-of-principle lattice 
service based on Enterprise Java Bean (EJB) is 
developed.  The service is demonstrated with J2EE 
Glassfish Application Server.  Typical data API follows 
the EJB conventions, for instance, the API for setting 
Twiss Parameters for a given element looks like 
model.setTwissFor(“an_element”, Twiss_Parameters) 
where an_element is the element name and 
Twiss_Parameter is a collection of Twiss Parameters.  
Because the API is written in Java, it is compatible with 
MATLAB and Python scripting languages with proper 
configuration and additional modules. 

Model Data Upload 
For each modelling code, an “adapter” program is 

needed to extract the model output and then to write the 
data into the database via the data access APIs.    For non-
Java modelling code, the easiest way is to write a run-
control program in scripting language such as Python 
which is for starting a model run, monitoring the progress, 
extracting the result files and uploading the model data to 
the database. 

Individual Lattice Data Upload and Extraction 
In addition to the batch lattice data upload, individual 

data can also be uploaded to or extracted from the 
database via data access APIs.  A web based user 

interface (UI) is under development for end users to 
update the database. 

Modelling Tool Input File Generation 
Modelling tool input files for lattice, element settings, 

and initial beam conditions can be generated directly from 
the database using the data access API set.  Currently, a 
program for generating XAL configuration files is 
implemented.  The XAL files generated by the program 
are tested with the XAL Online Model. 

Lattice Data Validation 
Data uploaded to the database should be validated to 

ensure data integrity.  Typically the data check is done by 
programmatically extracting the data from the database, 
running physics simulation code against the extracted 
data, and comparing the results with the original data.   

Lattice and Model Data Service 
Service-oriented architecture for high-level applications 

can provide better performance and efficiency [4, 5].  
Model data can be updated periodically as a running 
service. 

As mentioned above, proof-of-principle service based 
on J2EE EJB convention has been developed.  Glassfish 
Web Application Server can host such services.  The 
services will be standard interface between lattice/model 
data and client physics applications. 

CONCLUSION 
Lattice and model database as part of a global database 

has been designed and implemented.  Lattice data 
template was defined for a standard data upload program.  
As a first demonstration, XAL configuration files are 
generated programmatically from the database.  Lattice 
and model data API set is written for easy data access.  
Based on the data API, a proof-of-principle service is 
developed.  Near feature plan is to further develop 
services and UI. 
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