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Abstract 

Particle accelerators require Machine Protection 
Systems (MPS) to prevent beam-induced damage of 
equipment in case of failures. This becomes increasingly 
important for proton colliders with large energy stored in 
the beam such as LHC, for high power accelerators with a 
beam power of up to 10 MW, such as the European 
Spallation Source (ESS), and for linear colliders with high 
beam power and very small beam size. The reliability of 
Machine Protection Systems is crucial for safe machine 
operation; all possible sources of risk need to be taken 
into account in the early design stage. This paper presents 
a systematic approach to classify failures and to assess the 
associated risk, and discusses the impact of such 
considerations on the design of Machine Protection 
Systems. The application of this approach will be 
illustrated using the new design of the MPS for LINAC4, 
a linear accelerator under construction at CERN. 

INTRODUCTION 
Given the past experience with previous accelerators 

and the large complexity of the LHC, the MPS design did 
not follow a formal approach. The increasing need to 
model the reliability and availability of the LHC to push it 
towards its operational limits is the driving factor to apply 
systematic approaches to MPS dependability studies.  

In view of the LHC upgrades and the design of new 
accelerators (e.g. CLIC, ILC, ESS), it was decided to 
verify the applicability of a dependability-oriented 
approach for MPS for a smaller installation, LINAC4, 
with the use of formal hazard analysis techniques. 

STPA: APPLICATION TO 
ACCELERATORS 

The System-Theoretic Process Analysis (STPA, [1]) is 
a hazard analysis technique, which allows taking into 
account dependability requirements for Safety Critical 
systems since early design stages. It consists in the 
definition of few general scenarios in which the target 
safety could be violated (Accidents), the set of conditions 
which could potentially lead to their occurrence (Hazards) 
and the corresponding requirements for the control 
structures which should handle such scenarios. As the 
design of the control structures evolves and the 
knowledge on the system increases, requirements can be 
refined and control structures detailed accordingly. 
This method can be applied to particle accelerators for 
handling safety from different points of view: personnel, 
machine and environmental safety are all relevant aspects 
in this context. The focus of this paper is on machine 

protection rather than personnel and environmental safety, 
even though in some cases these aspects, or a 
combination of them, cannot be treated independently. 
The design of MPS is particularly suitable for STPA, as it 
has to be carried out while other systems are still under 
design. The choice of defining high-level control 
structures, which can be refined according to the updated 
status of the different input systems to the MPS (i.e. user 
systems), is the best solution for assuring the required 
flexibility to cope with new hazards, which were not 
taken into account during previous iterations. 

A TEST CASE: LINAC4 
In this paper STPA has been applied to a case study for 

a small accelerator as compared to the LHC: LINAC4, a 
160 MeV linear accelerator currently under construction 
at CERN for H- ions [2]. It will replace LINAC2 as first 
element in the future injector chain. The H- beam is 
produced by a RF Source. A Low-Energy Beam Transfer 
(LEBT, 45 keV) houses a pre-chopper, transports and 
matches the beam to a Radio Frequency Quadrupole 
(RFQ). The RFQ bunches and accelerates the beam up to 
3 MeV. A Medium-Energy Beam Transfer (MEBT, 3 
MeV) houses a chopper and matches the beam with the 
subsequent accelerating structures. For normal operation 
the pre-chopper defines the pulse length and the chopper 
creates the correct beam structure to reduce losses at 
injection in the Proton Synchrotron Booster (PSB). In 
case of faults requiring beam interruption, they allow 
stopping the full beam at low energy (45 keV or 3 MeV). 
Three accelerating structures (DTL, CCDTL and PIMS) 
allow reaching the final energy (160 MeV). 
 

Table 1: STPA: definition of Accident, Hazards and High-
Level Requirements for the Control Structures 

ACCIDENTS HAZARDS HIGH-LEVEL 
REQUIREMENTS 

A1: Lack of 
beam for other 
accelerators 

H1: Beam lost 
before reaching the 
transfer lines 

Beam must not be 
lost in the Linac 

A2: Damage 
to equipment 

H2: Beam doesn’t 
have the required 
quality to reach the 
end of LINAC4 

Beam must have the 
required quality 

A3: Release 
of radioactive 
material 

H3: Radioactive 
leaks in the 
environment 

Radioactive 
material must be 
surveyed 

A4: Injuries to 
staff members 

H4: Injuries during 
installation or 
maintenance 

Procedures must be 
in place for 
installation and 
maintenance 

THPFI045 Proceedings of IPAC2013, Shanghai, China

ISBN 978-3-95450-122-9

3388C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

07 Accelerator Technology and Main Systems

T23 Machine Protection



Figure 1: STPA application to LINAC4. LINAC4 is on the left of the picture. High level requirements are highlighted in 
red, on the right side. The systems or the teams in charge of satisfying the requirements are also shown: Beam Loss 
Monitors (BLMs) and Watchdogs monitor the beam losses. Beam Position Monitors (BPMs), Beam Current 
Transformers (BCTs), Wire Scanners and SEM grids monitor the beam quality. Operators, technicians and fire brigades 
manage maintenance and intervention actions. A control structure, composed of BIS, SIS and EC combines the signals 
coming from equipment, monitoring systems and operators and ensures safe and flexible operation.  

A definition of Accidents, Hazards and MPS 
Requirements, according to STPA, is proposed in Table 1. 
Based on the first iteration of the method, the deduced 
high-level requirements can be fitted in a first (very 
generic) control structure, with the systems responsible to 
cope with the listed hazards. By iterating this method, 
refining the hazards definitions and consequently the 
requirements for the control structure, a more detailed 
scheme can be drawn. After a few iterations, the result is 
already fairly detailed (Fig.1) and useful considerations 
can be deduced from the scheme. 

LINAC4 Machine Protection Systems 
For what concerns the first three accidents in Table 1, 

the adopted control structure is finally based on the same 
principle as the LHC MPS [3]: a hardware-based 
interlock system (Beam Interlock System, BIS) is 
exploited to cope with fast or critical failures. It will act 
on the RF Source for failures occurring before the DTL; 
for other failures the action of the pre-chopper and the 
chopper is exploited to stop the beam at low energy. A 
software-based interlock system (Software Interlock 
System, SIS) is used to cope with failures with non-
stringent timing constraints or when complex logic has to 
be implemented. As a general rule, failure modes or 
systems with high criticality must be surveyed by the BIS, 
leaving to the SIS a complementary role of protection and 
allowing for high flexibility. Concerning the BIS, the 
system topology has also been chosen to match the 
requirements: a daisy-chain structure is adopted, 
consisting of 2 Master interlock controllers, each acting 
on the elements in charge of stopping the beam transfer 
(i.e. RF Source and Choppers), and 6 Slave controllers, 
each assigned to a physically different ‘Interlock Zone’. 

Besides the need of safety, LINAC4 has stringent 
requirements in terms of availability (≥ 95%) and proton 
optimization, being the first element in the future injector 
chain. Therefore the so-called External Conditions (EC) 
are also present as a BIS input to optimize proton delivery 
to the different beam destinations and handle particular 
user requests. 

LINAC4 USER Systems 
Knowing the failure modes of the user systems (i.e. the 

input systems of the BIS), besides the ones of the MPS, is 
a key aspect for correctly designing the MPS itself. A 
failure catalogue [4] collecting the failure modes of such 
systems has been finalized in collaboration with system 
experts. An internal website was developed to store the 
failure catalogue and share the achieved knowledge 
among the different teams involved. 
The goal of the failure catalogue is to identify the main 
potential sources of equipment damage and unavailability. 
For all the failure modes which were identified, the 
following parameters need to be provided: 

 Beam settings (current, energy, etc.) 
 Quantification of beam losses (if present) 
 Expected location of beam losses (if present) 
 Estimated frequency of occurrence 
 Estimated down-time 
 Estimated damage 
 Protection systems (passive/active) able to 

mitigate the consequences of the failure 
 Other details (e.g. simulations results) 

One of the direct outcomes of the predictions for 
frequency and down time of the different failure modes is 
the possibility of running Monte Carlo simulations to 
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