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Abstract
Microbunching instability (μBI) usually exists in the

LINAC of a free electron laser facility. If it is not well-

controlled, the beam quality will be seriously damaged and

the machine will not operate properly. In many cases,

the longitudinal space charge (LSC) is a dominant fac-

tor that generates the instability; therefore its contribu-

tion must be studied in detail. The current model of the

LSC impedance [1] derived from the fundamental electro-

magnetic theory [2] has been widely used to explain the

physics of the LSC-induced μBI. [3] However, in the case

of highly bright electron beams, the plasma effect may also

play a role. In this article, the basic model of the LSC

impedance including the plasma effect is constructed by

solving Vlasov and Poisson equations in the 6-D phase

space, and the investigations are carried out to study the

modification to the instability gain. The solution indicates

that the μBI gain depends not only on the spatial informa-

tion of the beam, but also on the velocity (momentum) and

time information. The form of the solution is also consis-

tent with our expectation and is explainable.

INTRODUCTION
The possibility of oscillation in a plasma due to local

separation of charges and the consequent restoring forces

was discussed by J. D. Jackson long time ago. [4] The the-

ory is based on a neutral plasma, which has both positively

(ion) and negatively (electron) charged components. For a

charged particle beam in an accelerator, although it is not

neutral in terms of charges, there is still density fluctua-

tion due to the graininess of the individual particles — in

our case, the individual electrons. Such graininess is usu-

ally smoothed out in the fluid model and ignored in most

computations. In a highly intensive beam, however, it may

introduce the “plasma-like” oscillation (for convenience,

“plasma oscillation” is used hereafter), and must be inves-

tigated in details in order to reveal its magnitude and to

discover its physics. Similar discussions in the 2-D phase

space for this effects on the free electron laser have been

addressed by Kim, et al. [5]

In this article, we start our discussions in the 6-D phase

space by employing Vlasov and Poisson (Gauss) equations,

which describe the evolution of the distribution function

of the electron bunch and the electric field induced by the
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charge distribution. We then use a method similar to Jack-

son’s [4] to linearize the Vlasov equation and obtain the

solution of the initial-value problem. The solution includes

the contributions from both the perturbed and unperturbed

parts of the initial distribution. As the result, the contribu-

tion from the velocity distribution is also included. From

the solution, we see that the plasma oscillation introduces

a “relative dielectric factor (permittivity)” εr, and also an

extra factor coming from the initial velocity distribution.

At last, the form of the LSC impedance obtained with

Klimontovich particle distribution is given and discussions

are made.

SOLUTION OF INITIAL-VALUE
PROBLEM

We carry out the investigations with the equations de-

scribing the evolution of beam distribution under the in-

fluence of the electromagnetic force. The discussion is in

laboratory frame hereafter. In cylindrical coordinate sys-

tem, the linearized Vlasov-Poisson equation and the Pois-

son (Gauss) equation can be written:

∂f1
∂t

+ vz
∂f1
∂z

+ v⊥
∂f1
∂r

− eEz

γm

∂f0
∂vz

+
F⊥
γm

∂f0
∂v⊥

= 0, (1)

∂Ez

∂z
+

1

r

∂

∂r
(rEr) = − e

ε0

∫
f1dvz, (2)

where −e is charge of an electron, f(t, �r, �v) = f0(t, �r, �v)+
f1(t, �r, �v), with f0 being the unperturbed background of

the beam and f1 the density perturbation due to plasma os-

cillation. We assume that f0, f1 and �E have no azimuthal

dependence, which is reasonable. The Gauss’s law or Pois-

son equation, Eq. (2), will be solved in the particles’ rest

frame and then Lorentz transformed to the lab frame in the

next section.

Since the transverse velocity v⊥ is small, we can assume

vz ≈ v and F⊥ � Fz . Then Eq. (1) simplifies to

∂f1
∂t

+ v
∂f1
∂z

− eEz

γm

∂f0
∂v

= 0. (3)

Let us focus on Eqs. (3) and (2). Following Jackson, [4]

we perform Fourier transform in z and Laplace transform

in t on Eq. (3), and integrate by parts to obtain

∫
dz

[
e−ikz+iωtf1(v, z, t)

]t=∞

t=0

+

∫ ∞

−∞
dz

∫ ∞

0

e−ikz+iωtdt

×
[
(−iω + ikv)f1 − e

γm

∂f0
∂v

E

]
= 0. (4)
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For ω in the upper half plane, the upper limit of the first

term on the right hand side of Eq. (4) vanishes as t → ∞.

We have then the solution in (v, ω, k) space,

f1(v, ω, k) =
1

i(kv − ω)

[
Φ(v, k) +

e

m

∂f0
∂v

E(ω, k)

]
,

(5)

where

Φ(v, k) =

∫ ∞

−∞
dze−ikzf1(v, z, t = 0). (6)

Both Eq. (5) and Eq. (6) form the solution depending on

the initial-value of the density perturbation. If we perform

inverse Fourier transform on ω, we will obtain the density

perturbation f1(v, t, k) at later time, which represents the

time revolution of the density fluctuation. In the regular

LSC theory, the density fluctuation is neglected. However,

it will be taken into account under certain conditions in the

following discussions.

ELECTRIC FIELD INDUCED BY LSC
Based on the classical electromagnetic theory, the solu-

tion of Eq. (2) can be written as

Ez(�x) =
eλ

4πε0

∫
G(�x, �x′)ρ(�x′)d3�x′, (7)

with the Green function

G(�x, �x′)=
(z − z′)γ

[(x− x′)2+ (y − y′)2+ (z − z′)2γ2]3/2
. (8)

Here the same notations of Venturini’s [1] have been

used, with beam density λρ(x, y, z), uniform linear den-

sity λ, ρ(x, y, z) = ρ⊥(x, y)ρz(z), and normalization∫
ρ⊥(x, y)dxdy = 1.

In cylindrical coordinates, the Green function can be ex-

panded as [2]

G(�x, �x′) = − i

πγ2

∞∑
m=−∞

eim(φ−φ′)
∫ ∞

−∞
kdkeik(z−z′)

× Im

(
kr<
γ

)
Km

(
kr>
γ

)
, (9)

where r< and r> denotes the smaller and larger between

r and r′, respectively, and Im and Km are the modified

Bessel function of the first and second kind. Thus the lon-

gitudinal electric field Ez in the k-space becomes

Ez(k) = i
e

4πε

λ

πγ2

∞∑
m=−∞

∫
dV ′ρ(r′, φ′, z′)eim(φ−φ′)

× ke−ikz′
I<mK>

m. (10)

In our study, the unperturbed (linear) density distribu-

tion serves as the smooth background, therefore it does not

contribute to the longitudinal electric field at all. For this

reason, only the perturbed (non-linear) part (Eq. (5)) plays

a role. Assuming that the beam is of radius rb and has a uni-

form transverse distribution f⊥ = 1/πr2b when r ≤ rb, we

write the beam distribution as ρ(r, φ, z) = f⊥f1(v, z, t =
0). For an observation point located on axis (only m = 0
term contributes), [1] finally we obtain

E(ω, k) =
eλ

2πε0εrπkr2b

∫
W

dv

×
∫ ∞

−∞
dz

e−ikzf1(v, z, t = 0)

kv − ω

[
1− ξK1(ξ)

]
, (11)

where ξ = krb/γ, and

εr = 1− e2λ

2πε0γmk2

∫
W

∂f0
∂v

dv

v − ω/k
(12)

is the relative dielectric factor (permittivity). The path of

integration W is from v = −∞ to ∞ passing below the

pole v = ω/k. This path comes from the analytic continu-

ity from the upper ω-half-plane to the whole ω-plane. In-

troducing the frequency of plasma oscillation in lab frame,

ωp =
√

e2λ/2πε0γm, Eq. (12) can be written as

εr = 1− ω2
p

k2

∫
W

∂f0
∂v

dv

v − ω/k
. (13)

Equation (13) is also called the dispersion relation, it is

a function of the wavenumber k of the density fluctuation.

Equation (11) is the expression of the longitudinal electric

field induced by the LSC under the influence of density

fluctuation (plasma oscillation). Apparently, it includes the

contribution due to the velocity distribution of the beam.

In most of the cases, where the momentum and location

of the electron are decoupled, the perturbation can also be

written as f1(v, z, t = 0) = fv1(v, t = 0)fz1(z, t = 0).
Equation (11) becomes

E(ω, k) =
eλ

[
1− ξK1(ξ)

]
ε0εrπkr2b

∫
W

dv
fv1(v, t = 0)

kv − ω

× 1

2π

∫ ∞

−∞
e−ikzfz1(z, t = 0)dz. (14)

Equation (14) decouples the contributions from the beam

density distribution and velocity/momentum distribution.

INFLUENCE ON μBI
In this section, we start our preliminary discussions on

the effects of the modified LSC impedance in microbunch-

ing instability. As already known, the gain of μBI due to

the LSC impedance (linear in beam current) reads [6]

G = Ck|R56| I0
γ0IA

|Z(k)|
Z0

exp

(
− C2k2R2

56σ
2
γ

2γ2
0

)
, (15)

where C is the compression factor of a bunch compres-

sor (chicane), R56 is the transport matrix element of the

whole bunch compressor, and σr is the uncorrelated en-

ergy spread. In Eq. (15), one can see that the gain is pro-

portional to the absolute value of LSC impedance per unit

length Z(k).
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The impedance per unit length of the longitudinal space

charge is defined as

Z(k) = −Ez(k)/I(k), (16)

where I(k) is the Fourier transform of the beam current,

i.e., I(k) = ecλρz(k). Note that in our discussion ρz(k) =
(2π)−1

∫
e−ikzf1(z, t = 0)dz. Based on Eq. (14), we can

derive the LSC impedance in the existence of density fluc-

tuation:

Z(ω, k)=− Z0

πγεrrb

1−ξK1(ξ)

ξ

∫
W

f1(v, t=0)dv

kv − ω
. (17)

Comparing with the regular expression of the LSC

impedance without density fluctuation, [1, 3] we can see

that the difference comes from the relative dielectric factor

εr and the initial velocity perturbation f1(v, t = 0). More-

over, it is also a function of the oscillation frequency ω.

To illustrate the problem, plugging in Eq. (11) with the

Klimontovich particle distribution at t = 0 as the perturba-

tion, which is

ρ(v, z, t = 0) =
1

πr2b
f1(v, z, t = 0)

=
1

πr2b

Ne∑
j=1

δ(v − v0j )δ(z − z0j )δ(t) (18)

where Ne is the total number of the perturbed electrons.

There are poles, εr(k, ω) = 0 and ω = kv0j , enclosed by

the path of integration over ω. Considering the low energy

limit, where ωp � kv0j and εr ≈ 1− ω2
p/ω

2, and carry out

the integral by employing the residual principle, we have:

E(k, t) =
eλ

2πε0πkr2b

[
1− ξK1(ξ)

]×
∫
W

dω
e−iωt

εr(k, ω)

Ne∑
j=1

e−ikz0
j

kv0j − ω

≈ ei

ε0πkr2b

[
1− ξK1(ξ)

]×
[

Ne∑
j=1

e−ikz0
jωp

2

(
e−iωpt

ωp − kv0j
+

eiωpt

ωp + kv0j

)

+

Ne∑
j=1

e−ik(z0
j+v0

j t)

εr(k, kv0j )

]

≈ ie

ε0πr2bk

[
1− ξK1(ξ)

]
cos(ωpt)

Ne∑
j=1

e−ikz0
j

(19)

In the last step of Eq. (19), ωp � kv0j is applied. Thus the

corresponded impedance becomes:

Z(k, t) =
E(k, t)

ρk(v, t = 0)ecπr2b

=
iZ0

πγrb

1− ξK1(ξ)

ξ
cos(ωpt) (20)

where ρk(v, t = 0) is the Fourier transform of the initial

perturbation (18) over z. because ωp � kv0j , here we just

ignore the initial velocity v0j , and Z0 = 377 Ω is the free

space impedance.

In the high energy limit, where ωp → 0, therefore εr →
1, the electric field converges to

E(k) =
ie

ε0εrπr2bk

[
1− ξK1(ξ)

] Ne∑
j=1

e−ik(z0
j+v0

j t) (21)

and the impedance reads:

Z(k, t) ==
iZ0

εrπγrb

1− ξK1(ξ)

ξ
(22)

From the above, one can see that in the high energy limit,

the impedance of the longitudinal space charge differs from

the regular expression [1] only by a small amount which is

the high order part of the relative permittivity εr, and we

may certainly ignore it in practice.

In summary, to estimate the effect of the plasma oscil-

lation in the μBI study, the scale of the wavelength (or

the frequency) of the plasma oscillation plays an impor-

tant role. As we have already known, if the wavelength is

much larger than the scale of the region that concerns us,

the plasma effect can be neglected and our work gives the

detail analytically.

CONCLUSIONS
The electric field introduced by the longitudinal space

charge (LSC) with density fluctuation is studied in detail

by solving the Vlasov and Poisson equations. Its influ-

ence on the LSC-induced microbunching instability (μBI)

is carried out. The study shows that the gain curve of μBI

depends not only on the spatial information of the beam,

but also on the beam’s momentum/velocity information as

well. The investigation with Klimontovich particle distri-

bution shows the result consistent with the property of the

plasma oscillation.
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