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Abstract

In high intensity linear accelerators, the tune spreads in-
duced by the space-charge forces in the radial and longi-
tudinal planes are key parameters for halo formation and
beam losses. For matched beams they are the parameters
governing the number of resonances (including coupling
resonances) which affect the beam and determine the re-
spective sizes of the stable and halo areas in phase space.
The number and strength of the resonances excited in mis-
matched beams leading to even higher amplitude halos are
also directly linked to the tune spreads. In this paper, the
equations making the link between the basic linac param-
eters (1f frequency, zero-current phase advances, beam in-
tensity and emittances) and the tune spreads are given. A
first analysis of the way these linac parameters can be cho-
sen to minimize the tune spreads is presented. The ESS
linac parameters are used for this study.

INTRODUCTION

In high intensity linear accelerators where the beam
power is in the order of hundred kilowatts up to few
megawatts, activation due to loss of halo particles is a cru-
cial parameter affecting the design as well as the cost of the
accelerator. There has been several studies demonstrating
that the tune spreads induced by the space charge forces in
the two radial and longitudinal planes are key parameters
for halo formation and beam losses [1-3].

With o; and o (0¢; and o;) the transverse (longitudinal)
phase advances without and with space charge, the trans-
verse and longitudinal relative tune spreads are given by

oot — Ot ool — 01

Gt = G =
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where 7 = o/0p is the tune depression. These relative
tune spreads are parameters which give a “measure” of the
space-charge nonlinear effects on the beam dynamics as a
function of the beam current I with

me=0 mc=l O

Relative tune spreads are good indicators of the strength
of the space charge force, e.g., in a linac with a relative tune
spread of 0.6, the space charge force is 84% of the external
focusing force.

In a beam with space charge, the particle phase advances
range from the phase advance with space charge for par-
ticles with low amplitudes to the zero current phase ad-
vance for large amplitude ones (see Fig. 1). The relative
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Figure 1: Schematic representation of the particle phase
advances as a function of their amplitude for two relative
tune spreads with two beam currents /; and Iy > ;.

tune spreads are then the key parameters governing the
number of resonances between the particle oscillations and
the space-charge force oscillations, the space-charge “ex-
citation force” oscillations being mainly due to the non-
continuous character of the radial and longitudinal focus-
ing systems (matched beam, Fig. 1) and/or to beam mis-
matches (see Fig. 2).
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Figure 2: Ranges of resonances excited by a mismatch as a
function of (, the relative tune spread. For a given ( value,
each pair of curves defines the lower and upper limits of the
resonances (v = 2/3,1/2,1/3...) which are excited by the
odd (blue lines) and even (green lines) mismatch modes [2].

Higher ¢ means higher number of resonances and higher
excitations of those resonances for both matched and mis-
matched beams, then higher halo densities at larger am-
plitudes induced by the resonance overlap mechanism
which explains the particle diffusion at such large ampli-
tudes [1,2].
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The logical question raised by this analysis is “What is
the best choice of linac parameters to minimize the relative
tune spreads?” or, in other words, “‘How can we make high-
power linac less sensitive to space charge?”. The study pre-
sented here has been motivated by these questions.

THEORY

The linac beam physics in smooth approximation can be
studied using 10 parameters. The beam current (1), the
particle charge (q), rest mass (mgoc?) and energy (W), the
rf frequency (f) and the bunch spacing (N) are used to cal-
culate the space charge factor (K, see Eq. 4 and [4]). The
four other parameters are the transverse and longitudinal
rms emittances (€, ¢;) and zero current phase advances per
meter (oot, o0;1)-

Once these parameters defined, the system of 4 equations
(Egs. 3) governing the phase advances per unit of length in
transverse and longitudinal planes can be solved. Then the
relative tune spreads in transverse and longitudinal planes
can be calculated using Eq. 1.

UtaQ =5 €rms t (33)
O—lb2 =5 €rms 1 (3b)
1—ff.(a,b
J? = Jgt — K% (€9)
2(a, b
ol =08 — Kifj;s% )7 (3d)

a and b are the equivalent uniformly charged ellipsoid
semi-axes dimensions in the radial and longitudinal direc-
tions respectively, f f.(a, b) is the longitudinal bunch form
factor [4] and K is the space charge factor,
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where A is the rf wave length, € is the vacuum permittivity
and [ and -y, are the relativistic factors.

The system of equations 3 can be numerically solved us-
ing o4 and o, as search parameter, the ellipsoid dimensions
a and b being given by eqs. 3a and 3b respectively.

STUDY
Current Dependence of ¢

The evolution of the relative tune spreads as a function
of the beam current can be more easily grasped in the case
of a spherical bunch, a = b then ff. = 1/3. In this case,
the set of equations 3 leads to:

€rmst Ol = €rms | Ot

1
0752+O[3—/20'tg/2 _Jgt :0, (5)
€t
where the current independent parameter o« = K/(3 x

v531) has been introduced to emphasize the dependence
on current (). One can easily write a similar equation for
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the longitudinal beam parameters. Equation 5 and its lon-
gitudinal counterpart show that:

Im ¢=0 —
I—+o00

Equation 5 shows that the phase advances with space
charge become null only when the current becomes infi-
nite, consequently there is no theoretical current limit in
linacs. Assuming constant rms emittances, the decrease
of the tunes with space charge as the intensity increases
induces larger and larger bunch dimensions but the mo-
tion never becomes unstable. However, the practical limit
comes from the radial and longitudinal available apertures.
Equation 5 also shows, as expected, that the key factor
which determines the phase advances with space charge,
then the relative tune spreads, is the bunch charge density
/62 not the beam current I.

The behavior for the ellipsoidal bunches is plotted in
Fig. 3, the dependence on /T is visible from the plot.
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Figure 3: Evolution of (; and (; as a function of current at
the entrance of the ESS DTL [5].

Emittance Dependence of

The emittance dependence of the relative tune spread or
phase advance with current in spherical bunches can be de-
rived by differentiating Eq. 5 with respect to emittance. The
derivative has a positive value, which means higher emit-
tances result in higher values of phase advance with cur-
rent, and therefore to lower value of . This is true even in
the case of ellipsoidal bunches as shown in Fig. 4.

Figure 4 shows that higher emittances result in lower
relative tune spread which will lead to lower halo produc-
tion and therefore lower losses and activation. The trend is
much faster in the plane on which the emittance is varied,
nonetheless the other plane also acquires a lower relative
tune spread due to lower charge density in the bunch. On
the other hand, higher emittances results in bigger beam
sizes (~ +/€). This behavior means that there is an op-
timized couple of emittances which minimizes the beam
losses for a particular linac design. Such a minimum will
be achieved as a compromise between bigger emittances
that lower the halo production and lower emittances asso-
ciated with smaller beam core sizes but not necessarily to
denser “tails”. This study is not finished yet.
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Figure 4: Evolution of (; and (; as a function of transverse
normalized emittance at entrance to ESS DTL.

Zero Current Phase Advance Dependence of (

While it seems counter intuitive at first, the space charge
effects decrease when both zero current phase advances in-
crease, i. e. when both transverse and longitudinal bunch
dimensions decrease (See Fig. 5). The explanation of this
effect is that the space charge forces increase less than the
external forces when increasing both zero current phase ad-
vances. Figure 6 shows the behavior of the relative tune
spreads when only one zero current phase advance is var-
ied.
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Figure 5: Evolution of (; and (; when both o(; and o¢; are
multiplied by the same factor (input of the ESS DTL).

0.8

0.6 |- .

©
04 i

0.2 - n

| |
200 250

oot (deg/m)

|
100 150

Figure 6: Evolution of (; and (; as a funtion of zero current
transverse phase advance (input of the ESS DTL).

05 Beam Dynamics and Electromagnetic Fields

D04 High Intensity in Linear Accelerators

TUPWA034

Condition of Equal Relative Tune Spread, (; = (;

For every set of beam and linac parameters there is a
unique working point (oo, co;) on which the transverse
and longitudinal relative tune spreads are equal. At any
other working point, one of the two relative tune spreads
is bigger than the other, making the equal { point the least
sensitive working point to space charge forces.

The numerical search for the (; = (; condition can be
done substituting the expressions of o; and o; from Eq. 3¢
and 3d in Eq. 1. As shown in Fig. 7, this condition is satis-
fied for a given zero current phase advance ratio when the
normalized emittance ratio is fixed, whatever the values of
the other parameters. The (; = (; condition leads therefore
to a “universal” relation between the normalized emittances
and the zero current phase advances to apply to minimize
halo formation.

The condition of (; = (; is a better rule to follow with
respect to equipartition rule to minimize halo formation.
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Figure 7: Zero current phase advance ratio as a function of
the normalized emittance ratio to satisfy (; = (;.

CONCLUSION

It has been shown that for every linac, the parameters and
in particular the external focusing forces can be chosen to
minimize the effects of space charge. This is specially im-
portant in high power linacs where the space charge forces
are in the same order of the external forces. Numerical
tools have been built to solve the equations concerning the
choice of linac parameters to minimize the relative tune
spreads.
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