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Abstract 

The focusing properties of a quadrupole FODO 
channel with inserted multipole lenses are analyzed via an 
application of the averaging method. A general expression 
for the averaged focusing potential is obtained as a 
function of the position of multipole lenses with respect to 
FODO quadrupole lenses. Obtained results are 
subsequently applied to the problem of intense beam 
transport in a combined FODO structure. Accordingly, 
numerical and analytical treatments of high-brightness 
beam dynamics with suppressed space-charge induced 
halo formation are presented. 

 
INTRODUCTION 

Formation of a beam halo is a key issue for many 
existing and proposed accelerator projects. Small beam 
losses in the linac produce radio-activation, which 
degrade accelerator components, compromising their 
reliability as well as hinder or prevent hands-on 
maintenance. Traditional accelerator designs utilize linear 
focusing elements (quadrupoles, solenoids) to provide 
stable particle motion. High intensity non-uniform beams 
are intrinsically mismatched with such structures, which 
result in beam emittance growth and halo formation. In 
Ref. [1] it was proposed to use a higher-order multipole 
(duodecapole) component in a quadrupole focusing-
defocusing (FD) channel to prevent halo formation and 
emittance growth of a space-charge-dominated beam. The 
performed analysis can be extended to a FODO 
quadrupole structure with arbitrary multipole lenses. 
 

FODO STRUCTURE WITH HIGHER-
ORDER MULTIPOLES 

 
Consider a FODO quadrupole focusing structure with 

inserted multipole lenses (see Fig. 1). The beamline can 
be treated as a superposition of two focusing structures 
with the same period L, consisting of quadrupole lenses 
with a gradientG2 = Bpole / Rpole , and a higher-order 

multipoles with a field gradient Gm = Bpole / Rpole
m−1 , shifted 

along the longitudinal coordinate, z, by the distance Δ. 
The index m is related to number of poles, 2m, required to 
excite the corresponding multipole i.e. m = 3 for 
sextupole, m = 4 for octupole, m = 5 for decapole, m = 6 
for duodecapole, etc. The Lorentz force acting on a 
charged particle, arising from the magnetic field of the 
combined structure can be represented as  

 
 
 

 
 
Figure 1. Combined FODO stricture with quadrupoles G2  
and multipoles Gm lenses. 
 
 

 F = vz[−ixBy (2)+ iyBx (2)]G(z)  

 +vz[−ixBy (m)+ iyBx (m)]G(z − Δ) ,    (1) 
 

where vz = βc  is the beam velocity, Bx (2) , By (2)  are 
field components of the quadrupole lenses, Bx (m) , 
By (m)  are field component of the multipole lenses, and 
G(z)  is the longitudinal field dependence expanded in 
Fourier series:  
 

G(ξ) = 4
π

(−1)n−1

2n −1n=1

∞

∑ sin(2n −1)π D

L
sin2π (2n −1) ξ

L
 .  (2) 

 
According to the averaging method [2], particle motion in 
an oscillating field  
 

 
r = q

mγ
F(r , t) ,   (3) 

 
F(r , t) = [Fn

s

n=1

∞

∑ (r )sin(ωnt)+ Fn
c (r )cos(ωnt)] , (4) 

 

can be approximated by the following Hamiltonian: 
 

 
H = R2

2
+ q2

4(mγ )2
(Fn

s )2 + (Fn
c )2

ωn
2

n=1

∞

∑  .   (5) 

 
Calculation of the potential part of the Hamiltonian, Eq. 
(5), gives: 
 

Ueff = (
μoβc
L
)2[
r2

2
+ fςrm cos(m − 2)θ + ς 2 r

2(m−1)

2
] , (6) 

 
where  is the phase advance of transverse oscillations 
attained within a single period of FODO quadrupole 
channel: 
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μo =
L

2D
1− 4

3

D

L

qG2D
2

mcβγ
,          (7) 

 
 is the ratio of field components: 

 

ς = Gm

G2

 ,    (8) 

 

and the function f depends on the mutual positions of 
multipole lenses with respect to the quadrupoles:  
 

f =
1− 4

3
D

L
− 4 Δ2

LD
(1− 1

3
Δ
D
)

1− 4
3
D

L

,   Δ < D ,         (9) 

 

f =
1− 4 Δ

L

1− 4
3
D
L

 ,   Δ > D  .  (10) 

 

Note that f = 0 for , i.e. when multipole lenses 
are placed in the centers of drift spaces of FODO structure 
between quadrupole lenses. In this case, effective 
potential does not depend on the azimuthal angle: 
 

Ueff (r) = (
μoβc
L
)2[
r2

2
+ ς 2 r

2(m−1)

2
] .    (11) 

 
Similar problem for m = 3 was treated in Ref. [3]. 

In Ref [4] it was shown, that self-consistent potential 
of the stationary high-brightness, space-charge dominated 
beam, Ub , is opposite to external focusing potential: 
 

Ub = − γ 2

1+δ
Ueff ,                     (12) 

 

where δ ≈ b−1  is a small parameter inversely proportional 
to the dimensionless beam brightness 
b = (2 / βγ )(Io / Ic )(R / ε)

2 , Io is the beam current,
Ic = 4πεomc

3 / q = 3.13 x 107 (A/Z) [Amp] is the 
characteristic beam current, R is the beam size and ε is the 
normalized beam emittance. Space charge density 
distribution of a stationary beam is determined from 
Poisson’s equation: 
 

ρ(r, θ ) = −εo[
1

r

∂
∂r
(r
∂Ub

∂r
)+ 1

r2
∂2Ub

∂θ 2
] . (13) 

 

Taking into account Eqs. (6), (12), (13), the space charge 
distribution of the matched stationary beam in the 
considered structure is: 
 
ρ(r, θ ) = ρo[1+ ς

2 (m −1)2 r2(m−2)  
 

+2(m −1) fςr (m−2) cos(m − 2)θ ] . (14) 
 

 m = 3, ς = − 0.5   m = 4, ς = − 0.2  

 
 
 m = 5, ς = − 0.2   m = 6, ς = − 0.05  

 
Figure 2. Equipotential lines of the effective potential, Eq. 
(6), in a quadrupole-multipole focusing channel. 
 
 
 

Fig. 2 illustrates a family of equipotential lines of 
effective potential, Eq. (6), in the considered beamline for 
different multipole lenses incorporated into quadrupole 
lenses, Δ = 0. Equipotentials are functions of radius and 
azimuthal angle. Analysis shows, that among all presented 
cases, the quadrupole-duodecapole channel (m = 6) 
provides the best matching for the beam being cut along 
equipotential lines.  

Fig. 3 illustrates the results of BEAMPATH simulation 
of a 35 keV, 11.7 mA, 0.045 π cm mrad proton beam in a 
FODO quadrupole channel. A space-charge-dominated 
beam with an initially parabolic distribution function 

 

f = fo{1−
1

2
[
x2

Rx
2 +

y2

Ry
2 +

px
2

(ε / Rx )
2 +

py
2

(ε / Ry )
2 ]} ,   (15) 

 

and with the ratio of depressed - to - undepressed betatron 
tune shift of μ / μο = 0.4 is a subject of strong emittance 
growth and halo formation. Fig. 4 illustrates the dynamics 
of the beam with the same parameters in a FODO 
structure with combined quadruple-duodecapole lenses, 
correspondig to Δ = 0. The quadrupole gradient is kept 
constant along the structure while the duodecapole 
component gradually decreases from its nominal value to 
zero at a distance of 7 FODO periods. The injected beam 
with the same distribution, Eq. (15), was truncated along 
equipotential lines of effective potential, Eq. (6).  
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Figure 3. Emittance growth and halo formation of the 35 
keV, 11.7 mA, 0.045 π cm mrad proton beam in a 
FODO quadruple channel with  the period of L = 15 
cm, lens length of D  =  5 cm, and quadrupole field 
gradient of G2  = 0.03579 T/cm. Numbers  indicate  
FODO periods. 
 
Adiabatic decline of the duodecapole component results 
in transformation of truncated, non-uniform beam, into a 
beam, matched with the structure. Such matching 
provides significant suppression of halo formation. Fig. 4 
further illustrates the fraction of particles outside the 
elliptical area of the beam core 2.5 < x2 >   2.5 < y2 >  
for both cases. The fraction of halo particles oscillates 
along the structure, with significantly reduced number of 
halo particles in the quadruple-duodecapole structure, 
than in a pure quadruple channel. 
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Figure 4. Adiabatic matching utilized to avoid halo 
formation of a 35 keV, 11.7 mA, 0.045 π cm mrad 
proton beam in a FODO quadruple-dodecapole 
channel. The channel is characterized by the period of 
L = 15 cm, lens length of D = 5 cm, quadrupole field 
gradient of G2 = 0.03579 T/cm and adiabatic decline 
of duodecaple component fromG6 = −1.756 ⋅10−4  

T/cm5 to zero at the distance of 7 periods. Numbers 
indicate FODO periods. 
 

 
 

Figure 5. Fraction of particles outside the beam core 

2.5 < x2 >   2.5 < y2 >  as a function of FODO 

periods: (blue) quadrupole channel, (red) quadrupole-
duodecapole channel. 
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