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Abstract 

Beam dynamics in an RFQ are strongly affected by 
coupling between transverse and longitudinal particle 
oscillations. The adiabatic process of high-intensity 
bunched beam formation results in equipartitioning in the 
RFQ, which determines the longitudinal beam emittance. 
Avoiding parametric resonances is an important design 
criterion to prevent significant emittance growth of the 
beam. Manufacturing errors can result in beam emittance 
growth and reduction of beam transmission. This paper 
will present the results of a study where analytical and 
numerical evaluations were performed to determine the 
effect of the aforementioned factors on beam quality in a 
high-current RFQ. 

 

BEAM EQUIPARTITIONING 
 

The Hamiltonian of the averaged particle motion in an 
RF linac is given by [1]: 

 

H =
px
2 + py

2 + pz
2

2m
+ qUext + qUb     (1) 

Uext =
ULT

π
[Io (kzr)sin(ϕ s − kzζ )+ kzζ cosϕ s ]+

mΩr
2r2

2q
 (2) 

 

where px and py are transverse momenta, pz = Pz − Ps  is 
the deviation of longitudinal momentum from the 
momentum of the synchronous particle, ζ = z − zs  is the 

longitudinal deviation from the synchronous particle, UL 
is the intervane voltage, T = (π / 4)A  where A is the 
efficiency of acceleration, kz = 2π / βλ  is the wave 

number, ϕ s  is the synchronous phase, and is the 

transverse oscillation frequency without vane modulation: 
 

Ωr =
ω
2π 2

χ qUL

mc2
(
λ
2a
)2   (3) 

 

where is the circular frequency,  is the 

focusing efficiency, a is the radius of aperture, and Ub is 
the space charge potential.  

The self-consistent solution for a stationary matched 
beam distribution can be expressed as a function of the 
Hamiltonian. A convenient way to do so is to use an 
exponential function of the form f = fo (−H /Ho ) : 
 

f = fo exp(−
px
2 + py

2 + pz
2

2mHo

−
qURFQ

Ho

− qUb

Ho

) .         (4) 

 

Eq. (4) indicates that the rms momentum spread in a 
stationary beam distribution is the same in all 3 directions 
mHo = < px

2 > = < py
2 > = < pz

2 > , from which the 
equipartitioning condition [2] can be derived: 

 

η =
ε z R
ε t Rz

= 1    (5) 

where , and  are normalized transverse and 

longitudinal beam emittances, and Rx = Ry = R, Rz are 
averaged bunch sizes. In an RFQ linac, continuous beam 
is initially matched in the radial direction and a well-
bunched beam is formed during adiabatic increase of the 
vane modulation. In the presence of sufficient collective 
interaction through space charge, the bunch evolves into a 
equilibrium state where the equipartitioning condition, 
Eq. (5), is fulfilled.  

Figs. 1 - 3 illustrate BEAMPATH beam dynamics 
simulation results for an RFQ linac designed using 
PARMTEQM for acceleration of protons from 35 keV to 
750 keV. Fig. 3 shows the variation in the equipartitioning 
parameter, Eq. (5), along the RFQ structure for different 
values of beam current. At negligible beam current, the 
beam occupies all available area in longitudinal phase 
space (see Fig. 2). With high values of beam current, the 
space charge field of the beam provides strong coupling 
between degrees of freedoms and results in an adjustment 
of the longitudinal beam emittance such that the 
equipartitioning condition is ε z = ε t (Rz / R)  is fulfilled. 

This results in the longitudinal beam emittance for space-
charge dominated beams being smaller than that of an 
emittance-dominated beam (see Fig. 2). For the 
considered case, equipartitioning appears at values of 
beam current I > 20 mA. Within the range of 0 < I < 20 
mA, equipartitioning is not observed because of 
insufficient interaction between particles (see Fig. 3). 

TRANSVERSE PARAMETRIC 
RESONANCE 

The transverse particle motion in an RF linac is 
affected by coupling with longitudinal motion because of 
the dependence of the RF defocusing force on the RF 
phase. Neglecting space-charge forces, the transverse 
particle oscillation in an RF field in the smooth 
approximation is determined by equation [1] 
 

d 2x

dt 2
+ x[Ωrs

2 − Ω2

2
ctgϕ sΦsin(Ωt +ψ o )] = 0          (6) 

 
where Φ is the amplitude and  is the frequency of 
longitudinal oscillations: 

Ω2 =ω 2 qULT

π
sinϕ s

m(βc)2
.  (7) 

The transverse oscillation frequency of a synchronous 
particle in the presence of an RF field is given by: 

.   (8) ____________________________________________  
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 I = 0   I = 5 mA 

 
I = 20 mA  I = 50 mA 

  
Figure 1. Equipartitioning parameter, Eq. (5), along RFQ 
structure for different values of beam current. 
 
 I = 0   I = 35 mA 

  
Figure 2. Output longitudinal phase space. 

 

 
Figure 3. Equipartitioning parameter at the end of RFQ 
buncher section as a function of beam current. 
 
Because of the periodic variation of the transverse 
oscillation frequency with longitudinal frequency, 
parametric resonance occurs when Ωrs = (n / 2) Ω , n = 1, 
2, 3… The regions of parametric instability are [3] 

bn
2

< Ωrs

Ω
<

an
2

    (9) 
 

where for the first two regions of instability, n = 1, 2, the 
parameters an, bn are:  

a1 = 1+ q −
q2

8
− q

3

64
 ,         b1 = 1− q −

q2

8
+ q

3

64
     (10) 

 

a2 = 4 +
5q2

12
− 763q

4

13824
,      b2 = 4 −

q2

12
+ 5q4

13824
  (11) 

 

and the parameter q =Φ / tgϕ s ≈ϕ s / tgϕ s . 

In an RFQ linac, the transverse oscillation frequency is 
typically larger than the longitudinal oscillation 
frequency, and the first n = 1  parametric resonance 
instability region is avoided. The potentially dangerous 
region in this case is the second parametric resonance 
bandwidth where n = 2. Instabilities of higher-order 
resonance regions are typically unimportant [1]. 
 

LONGITUDINAL PARAMETRIC 
RESONANCE 

Injection of low-velocity particles into an RFQ results 
in dependence of the longitudinal oscillation frequency on 
transverse particle position. Neglecting space-charge 
forces, the equation of small-amplitude longitudinal 
oscillations for off-axis particles is given by [1]: 
 

d 2ζ
dt 2

+Ω2 Io (kzr)ζ = Ω2

kz tgϕ s

[Io (kzr)−1]  .   (12) 

 

Averaged transverse oscillations can be approximated by 
r = RcosΩrst . Periodic function Io (kzRcosΩrst)  can be 
expanded in Fourier series [1]: 
 

Io (kzRcosΩrst) = Io
2 (
kzR

2
)+ 2 Im

2 (
kzR

2
)

m=1

∞

∑ ⋅cos2mΩrst  (13) 

 

Because the amplitudes of the terms of the Bessel 
function drop off quickly, only the first two terms are 
important, resulting in the following equation of motion: 
d 2ζ
dt 2

+Ω2ζ[Io
2 (
kzR

2
)+ 2I1

2 (
kzR

2
) ⋅cos2Ωrst]  

= Ω2

kz tgϕ s

[Io
2 (
kzR

2
)−1+ 2I1

2 (
kzR

2
)cos2Ωrst]  (14) 

 

Analysis of longitudinal parametric instabilities (see 
Refs. [1, 3]) includes (i) consideration of a Mathieu-type 
equation parametric resonance instability neglecting the 
right-side part of Eq. (14), and (ii) external resonances, 
taking into account the right-hand external driving force 
of Eq. (14). Longitudinal parametric resonances occur 
when the following condition is fulfilled: 

Ωrs

Ω
=
Io (

kzR

2
)

n
    n = 1, 2, 3,… (15) 

with the region of parametric instability defined as: 
 

Io
2 (
kzR

2
)

an
< (Ωrs

Ω
)2 <

Io
2 (
kzR

2
)

bn
  (16) 

where an, bn are given by Eqs. (10), (11), and the 
parameter 
 

q = ( Ω
Ωrs

)2 I1
2 (
kzR

2
) .  (17) 

The first significant parametric resonance area is when n 
= 1. This leads to the following resonance bandwidth 
defined by Eq. (16): 
 

TUPWA067 Proceedings of IPAC2013, Shanghai, China

ISBN 978-3-95450-122-9

1860C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

05 Beam Dynamics and Electromagnetic Fields

D04 High Intensity in Linear Accelerators



Io
2 (
kzR

2
)− I1

2 (
kzR

2
) < (Ωrs

Ω
)2 < Io

2 (
kzR

2
)+ I1

2 (
kzR

2
) .   (18) 

 

An external resonance occurs when the transverse 
oscillation frequency is Ωrs = (Ω / 2)Io (kzR / 2) . Both 
external and parametric resonances can be avoided 
simultaneously when Ωrs /Ω > Io (kza / 2)  [1]. 

Fig.4 illustrates two different cases of RFQ beam 
dynamics. The RFQ presented on the left side, was 
designed to avoid parametric-resonance bandwidths, Eqs. 
(9), (18). The other RFQ shown on the right side of Fig. 4 
was designed using a more conventional approach, 
resulting in the parametric resonance conditions being met 
at a certain distance along the RFQ (see Fig. 4b). This 
results in noticeable transverse emittance growth with 
respect to the first case, where the transverse emittance 
remains nearly constant (see Fig. 4c). In both cases, the 
beams eventually become equipartitioned (see Fig. 4d), 
with the longitudinal emittance also satisfying the 
equipartitioning condition, Eq. (5). 

EFFECT OF MANUFACTURING ERRORS 
ON BEAM EMITTANCE 

Manufacturing errors are a source of additional beam 
emittance growth and beam losses. The increase of the 
amplitude of longitudinal oscillations at each cell due to 
random errors can be described as an increase in the rms 
relative momentum spread within the bunch [4]: 
< δ pz >

2

Pz
2 = π 2

2
(
Ω
ω
)4 ctg2ϕ s (<

δUL

UL

>2 + < δT
T

>2 )  

+ π 2

2
(
Ω
ω
)2 [1+π 2 (

Ω
ω
)2 ] < δL

L
>2 .     (19) 

The increase of the transverse amplitude of particle 
oscillations at each cell is estimated as [4]  

 

< δR
R

>2= 2(< δro
R

>2 + < δUL

UL

>2 + 4 < δRo
Ro

>2 )       (20) 

where δro  is the axis displacement, and δRo  is the error 

in average radius of the vane structure Ro = a / χ . 
Simulations of beam dynamics in the RFQ with 

UL = 72.6 kV  (see Fig. 4a) were performed with the 
following parameters randomly varied and uniformly 
distributed within an interval of [− Δ,  Δ] at each RFQ cell: 
cell size L, aperture a, maximum deviation of electrodes 
from the axis ma, and deviation of electrodes from optical 
axis δxo, δyο. Values of the beam emittances at the end of 
the RFQ structure were compared with emittance values 
at the exit of the ideal structure. Fig. 5 illustrates the effect 
of transverse and longitudinal beam emittance growth as 
functions of the maximum manufacturing random error Δ. 
Results of the simulations indicate that an error Δ < 20 
μm results in acceptable emittance growth of 20% , while 
larger errors result in significant emittance growth. 

 
 

a)    

   
b) 

    
c) 

 
d) 

    
Figure 4. Beam dynamics in RFQ with beam current I = 35 
mA: (left) avoiding parametric resonances, (right) 
including parametric resonances: (a) RFQ parameters, (b) 
parametric resonance bandwidth: (green) Eq. (18), (red) 
Eq. (9), (c) beam emittances, (d) equipartitioning 
parameter, Eq. (5). 
 

         
Figure 5. Effect of manufacturing errors on beam emittance. 
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