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Abstract

Flat beams can be created successfully in electron ma-

chines by applying effective stand-alone solenoid fringe

fields in the electron gun. Extension of this method to ion

beams was proposed conceptually. The present paper is on

the decoupling capabilities of an ion beam emittance trans-

fer line. The proposed beam line provides a single-knob-

tool to partition the horizontal and vertical emittances,

while keeping the product of the two emittances constant

as well as the transverse rms Twiss parameters αx,y and

βx,y in both planes. It is shown that this single knob is the

solenoid field strength.

INTRODUCTION

From first principles beams are created round without

any coupling among planes. Their rms emittances as well

as their eigen-emittances are equal in the two transverse

planes. Thus, any transverse round-to-flat transformation

requires a change of the beam eigen-emittances by a non-

symplectic transformation [1]. Such a transformation can

be performed by placing a charge state stripper inside an

axial magnetic field region as proposed in [2]. Inside such

a solenoid stripper, transverse inter-plane correlations are

created non-symplectically. Afterwards they are removed

symplectically by a decoupling section including a regular

quadrupole triplet and a skew quadrupole triplet.

The planned EMTEX (emittance transfer experiment)

beam line for the demonstration of transverse rms emit-

tance transfer is shown in Fig. 1. A quadrupole triplet

and a skew quadrupole triplet separated by a drift space

are employed to remove these correlation symplectically.

The section from the solenoid exit to the skew triplet exit

will be called decoupling section in the following. A fi-

nal quadrupole triplet is used for matching to the existing

beam line followed by a beam current transformer and an

emittance measurement unit.

STRIPPING INSIDE A SOLENOID

Let C0 denote the second moment matrix at the entrance

of the solenoid. If the beam has equal horizontal and ver-

tical rms emittances and no inter-plane correlations, the

∗Work supported by the HIC for FAIR and the BMBF
† c.xiao@gsi.de

Figure 1: Layout of the EMTEX section.

beam matrix can be simplified to

C0 =

⎛
⎜⎜⎝

εβ 0 0 0
0 ε

β 0 0

0 0 εβ 0
0 0 0 ε

β

⎞
⎟⎟⎠ . (1)

Assuming a very short solenoid, its transport matrix can be

divided into two parts

Rin,out =

⎛
⎜⎜⎝

1 0 0 0
0 1 ±kin,out 0
0 0 1 0

∓kin,out 0 0 1

⎞
⎟⎟⎠ (2)

If the beam has the same rigidity at the solenoid entrance

and exit, kin is equal to kout. The first part describes the

entrance fringe field and the second part is the exit fringe

field. In here the focusing strength of the solenoid is

k =
B

2(Bρ)
. (3)

B is the on-axis magnetic field strength and Bρ is the

beam rigidity. In order to change the eigen-emittances a

non-symplectic transformation has to be integrated into the

round-to-flat transformation section. The transformation

through the solenoid is non-symplectic if the beam rigid-

ity is abruptly changed in between the entrance and exit

fringe fields, thus the beam properties are reset inside the

solenoid. The non-symplectic transformation is accom-

plished for instance by changing the beam rigidity Bρ in

between the fringe fields from (Bρ)in to (Bρ)out through

charge state stripping. Defining

δq :=
(Bρ)in
(Bρ)out

(4)
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the exit fringe field transfer matrix changes to

R
′
out =

⎛
⎜⎜⎝

1 0 0 0
0 1 −δqk 0
0 0 1 0

+δqk 0 0 1

⎞
⎟⎟⎠ . (5)

The focusing strength of the solenoid k is calculated from

the unstripped charge state. After the stripper the beam

passes through the exit fringe field with reduced beam

rigidity and the beam matrix C1 after the exit fringe field

becomes

C2 =

(
εnRn akεnβnJn

−akεnβnJn εnRn

)
, (6)

where a := δq − 1 and

εn =

√
εβ(

ε

β
+ a2k2εβ +Δϕ2), βn =

βε

εn
, (7)

introducing the 2×2 sub-matrices Rn and Jn

Rn =

(
βn 0
0 1

βn

)
, Jn =

(
0 1
−1 0

)
. (8)

Inter-plane correlations are created and the rms emittances

and eigen-emittances after the solenoid with stripper foil

read

εx,y = εn, ε1,2 = εn(1± akβn) . (9)

and the four-dimensional rms emittance is

ε4d = ε1ε2 = ε2 + εβΔϕ2 . (10)

The four-dimensional rms emittance increase is propor-

tional to the beam sizes on the stripper foil. It is purely

from scattering in the foil; it is not caused by the shift of

beam rigidity inside the longitudinal magnetic field. The

parameter t is introduced to quantify the inter-plane cou-

pling

t =
εxεy
ε1ε2

− 1 ≥ 0 (11)

DECOUPLING SECTION
The simplest skew decoupling section contains three

skew quadrupoles with appropriate betatron phase ad-

vances in each plane. Let Rq be the 4×4 matrix corre-

sponding to a certain arrangement of quadrupoles and drift

spaces and assume that this channel is represented by an

identity matrix in the x-direction and has an additional 90◦

phase advance in y-direction as in [3]

Rq =

(
In On

On Tn

)
. (12)

Here the 2×2 sub-matrices On, Tn and In are defined as

On =

(
0 0
0 0

)
, Tn =

(
0 u
− 1

u 0

)
, In =

(
1 0
0 1

)

(13)

If the quadrupoles are tilted by 45◦ the 4×4 transfer matrix

can be written as

R = RrRqR
T
r =

1

2

(
Tn+ Tn−
Tn− Tn+

)
. (14)

where

Rr =

√
2

2

(
In In
−In In

)
, Tn± = Tn ± In. (15)

The beam matrix C3 after the decoupling section is

C3 = RC2R
T
=

(
η+Γn+ ζΓn−
ζΓn− η−Γn+

)
, (16)

and the 2×2 sub-matrices Γn± are defined through

Γn± =

(
u 0
0 ± 1

u

)
, (17)

with

η± =
εn
2
(
βn

u
+

u

βn
± 2akβn), (18)

and

ζ =
εn
2
(−βn

u
+

u

βn
) . (19)

Assuming that this beam matrix is diagonal, its x-y com-

ponent vanishes

ζΓn− = On (20)

solved by

u = βn . (21)

This result was found earlier in [3] for instance. However,

the major steps have been repeated here since they will be

referred to later.

Suppose that the decoupling transfer matrix R is able

to decouple the two transverse planes of C2. We still do

not know how this transfer beam line looks in detail, but

anyway we calculate the final rms emittances obtaining

εx,y =
εn
2
(
βn

u
+

u

βn
± 2akβn) . (22)

For a given solenoid strength k0, referring to the unstripped

beam, the corresponding quadrupole gradients of the de-

coupling section are determined using a numerical rou-

tine, such that finally the rms emittances are equal to the

eigen-emittances. If these optimized gradients are applied

to remove inter-plane correlations produced by a differ-

ent solenoid strength k1, the resulting rms emittances and

eigen-emittances at the exit of the decoupling section are

calculated to be

εx,y =
εn(k1)

2

[
βn(k1)

βn(k0)
+

βn(k0)

βn(k1)
± 2ak1βn(k1)

]
(23)

and
ε1,2 = εn(k1) [1± ak1βn(k1)] (24)
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Figure 2: Evolution of the rms emittances and eigen-

emittances along the EMTEX beam lines for two cases.

Figure 3: Eigen-emittances and rms emittances calcu-

lated by analytical method and by multi-particle tracking

through the EMTEX beam line.

with the parameter t

t =
a4 ε2β2

( ε
β +Δϕ2)( ε

β + a2k20εβ +Δϕ2)

(k21 − k20)
2

4
. (25)

In the same way the rms Twiss parameters of a beam cou-

pled by k1 but decoupled by R(k0) are found from Eq. (16)

as

α̃x = α̃y = 0, β̃x = β̃y = βn(k0) , (26)

showing that the rms Twiss parameters after decoupling do

not depend on the coupling solenoid strength k1 if the de-

coupling section was set assuming a coupling strength k0.

EMTEX beam line uses more elements than a single skew

triplet because of finite apertures and gradients of a real ex-

periment. Fig. 2 illustrates the multi-particle beam dynam-

ics simulations of the transverse emittance transfer beam

line. The final eigen-emittances and rms emittances at

the exit of the skew quadrupole triplet calculated using

Eq. (24) and those obtained from tracking through EMTEX

are compared in Fig. 3. The remarkable result is that both

decoupling matrices work effectively for a wide range of

longitudinal magnetic field values, i.e. the beam is well

decoupled for a wide range of longitudinal magnetic fields

Figure 4: Horizontal and vertical beta-functions of the

beam along the EMTEX beam line for different solenoid

field strengths.

around the gradients the quadrupoles have been optimized

for [4]. To exclude that this is casual for this one beam line,

the beam line has been modified by prolonging or shorten-

ing drifts and quadrupole field lengths. For all modifica-

tions (all using a regular quadrupole triplet followed by a

skew quadrupole triplet) the same behavior of decoupling

performance was observed.

Another convenient feature, which can be explained for

the generic case of decoupling according to Eq. (24), seems

to manifest as a general rule in numerical matrix as well as

in tracking calculations: the shape of the transverse beta-

functions after the decoupling section does not practically

depend on the solenoid field strength. In other words,

the two transverse rms ellipses after decoupling are just

changed in size through the solenoid field; their orienta-

tion and shape remains uneffected by the solenoid strength.

This matching capability is illustrated in Fig. 4.

CONCLUSION AND OUTLOOK
The beam line decoupling performance was found to be

very stable w.r.t. the magnetic field strength of the solenoid,

i.e. the same decoupling gradients can be applied for a

wide range of solenoid fields without relevant reduction of

the decoupling performance. After the beam is decoupled

its rms Twiss parameters do not practically depend on the

solenoid field strength that created the coupling. Although

the results were illustrated using specific beam parameters,

they apply for any other set of beam parameters transported

through the proposed kind of beam line. For the time be-

ing we can explain the result for a generic case but not the

generality of which it has been observed.
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