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Abstract
Based on the step-by-step chromaticity compensation 

method [1] and artificial intelligence algorithms, we 
propose new numerical methods, called chromatic 
sextupole pair optimization methods, for enlarging the 
dynamic aperture of electron storage rings. In the new 
methods, the decision variables related to chromatic 
sextupole pairs are optimized using artificial intelligence 
algorithms to enlarge the dynamic aperture. At the end, 
we demonstrate that the new methods are equivalent to 
the recently used numerical method, in which the decision 
variables, sextupole strengths, are optimized using 
artificial intelligence algorithms. 

INTRODUCTION
In an electron storage ring, a large enough dynamic 

aperture (DA) is desired for high beam injection 
efficiency and long beam lifetime. In the analytical 
approach for DA optimization, such as widely-used single 
resonance method, the DA is indirectly optimized by 
minimizing (or maximizing) a penalty function, which is 
a weighted sum of some linear and nonlinear quantities. 
The optimization results depend on the weight settings 
and the lattice designers’ experience, and usually are not 
optimal solutions. In the numerical approach, including 
the step-by-step chromaticity compensation method, the 
scanning method and the artificial intelligence (AI) 
algorithms, the DA is directly optimized based on particle 
tracking. Especially in recent years, the AI algorithms, 
like genetic algorithms, have been successfully applied to 
search for optimal solutions for the optimization of DA. 

In this paper, we point out that the deficiencies of the 
step-by-step chromaticity compensation method can be 
cured by introducing AI algorithms, and then propose new 
numerical methods, called chromatic sextupole pair 
optimization methods, for the optimization of DA. 

STEP-BY-STEP CHROMATICITY 
COMPENSATION METHOD 

The schematic diagram of the step-by-step chromaticity 
compensation method [1] is shown in Fig. 1, where 

0 0( , )x y� �  are natural chromaticities, 1 1( , )x y� �  are 
compensated chromaticities, and the line from A to B is 
the chromaticity compensation path. The chromaticities 
are compensated by many steps, and at each step the 
chromaticities are only compensated by small values. At 
each step there are NSF NSD pairs of focusing and 
defocusing chromatic sextupoles to be examined (NSF and 
NSD are the numbers of the families of focusing and 
defocusing chromatic sextupoles, respectively), and the 

pair demonstrating the best DA is chosen and fixed. Such 
a procedure is repeated until the chromaticity 
compensation is finished.  

1 1: ( , )x yB � �

y�

x�

0 0: ( , )x yA � �

Figure 1: The schematic diagram of the step-by-step 
chromaticity compensation method. 
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Figure 2: The magnet layout and linear optics functions of 
one period of the studied lattice. 

As an example of application, we take one lattice of the 
HLS-II storage ring with natural emittance of about 15 
nm-rad shown in Fig. 2. There are two families of 
focusing sextupoles: S1 and S3, and two defocusing 
families: S2 and S4. The quantitative criterion of DA used 
here is based on the clipped area of DA, which is 
provided in the code ELEGANT, and the symmetry of DA 
is considered in the quantitative criterion in the form of 
weighted sum. We tried different values of the number of 
steps N: 10, 20, 30, 40 and 50, and the quantitative values 
of DAs obtained at these values are shown in Fig. 3. We 
can see that at N = 20 steps the quantitative value of DA is 
largest, i.e., the DA is best. When N is too large, due to 
too small nonlinear perturbation caused by each 
chromatic sextupole pair, the comparison of DAs obtained 
at different chromatic sextupole pairs is meaningless, 
especially in the later part of the optimization process. So 
the problem of the settings of N is a deficiency of this 
method. In addition, due to that the tunes of off-
momentum particles change as the chromaticities are 
step-by-step compensated, the off-momentum DAs cannot 
be directly included in the optimization. The DA obtained 
at N = 20 steps is shown in Fig. 6 (blue line) in the next 
section, and the number of times that each chromatic 
sextupole pair is chosen as the best pair is shown in Fig. 4. 
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Figure 3: The quantitative values of DAs obtained at 
different numbers of steps N.
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Figure 4: The number of times that each chromatic 
sextupole pair is chosen as the best pair. 

CHROMATIC SEXTUPOLE PAIR 
OPTIMIZATION METHODS 

Method 1: Chromatic Sextupole Pair Optimizat-
ion with Chromaticity Compensation Path 

After the optimization of DA using the step-by-step 
chromaticity compensation method, we can know the 
number of times that each chromatic sextupole pair is 
chosen as the best pair, for example as shown in Fig. 4. 
We can imagine that if we use another optimization 
process to obtain the same number of times as shown in 
Fig. 4, the optimized DA must be the same as that in Fig. 
6 (blue line). So we can convert such an optimization 
problem into a usual optimization problem, in which the 
decision variables are the number of times that each 
chromatic sextupole pair is chosen as the best pair and the 
optimization objective is DA. Such a usual optimization 
problem can be easily solved by AI algorithms. 

In the converted optimization problem, the number of 
decision variables M = NSF NSD, and the decision 
variables can be written as (N1, N2, …, Nm, …, NM), where 
Nm represents the number of times that mth chromatic 
sextupole pair is chosen as the best pair and Nm is a 
nonnegative integer. The sum of all Nm is equal to the 
number of steps N, i.e.,

.      (1) 1 2 m MN N N N N� � �� � � � � � � � 	
For a given value of N, mth chromatic sextupole pair 
contributes the chromaticities by values of 

 �1 0 1 0( ) / , ( ) /x x m y y mN N N� � � �� 
 � 
 N . The decision 

variables are optimized to enlarge DA using AI algorithms. 
We call this new method the chromatic sextupole pair 

optimization (CSPO) method. In the CSPO method in this 
subsection, for any solution, if the natural chromaticities 

are compensated by each chromatic sextupole pair 
successively, the increase of chromaticities will be along 
the path from A to B in Fig. 1. So we call this CSPO 
method the CSPO with chromaticity compensation path 
(Method 1). In Method 1, N can be set to be a very large 
number, and the off-momentum DAs can also be directly 
included in the optimization. 
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Figure 5: The quantitative values of DAs obtained by the 
step-by-step chromaticity compensation method (blue 
column) and Method 1 (red column) at different N.
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Figure 6: DAs obtained by the step-by-step chromaticity 
compensation method (blue line) and Method 1 (red line). 

We applied Method 1 to the optimization of DA for the 
studied lattice, and the AI algorithm that we used is the 
particle swarm optimization (PSO) algorithm. The 
quantitative values of DAs obtained at N = 20, 50 and 
10,000 times are shown in Fig. 5 (red column). For a 
comparison, the quantitative values of DAs obtained at N
= 20, 50 steps using the step-by-step chromaticity 
compensation method are also shown in Fig. 5 (blue 
column). We can see that the DA quantitative value 
obtained by Method 1 becomes larger when N becomes 
larger. This is because the values of the chromaticities 
contributed by each chromatic sextupole pair become 
more precise. We also can see that Method 1 can obtain 
larger DA quantitative value, i.e., better DA than using the 
step-by-step chromaticity compensation method. The DA 
obtained at N = 10,000 times using Method 1 (red line) is 
better than that obtained at N = 20 steps using the step-by-
step chromaticity compensation method (blue line), which 
can be seen in Fig. 6. 

Method 2: Chromatic Sextupole Pair Optimizat-
ion without Chromaticity Compensation Path 

In Method 1, the ratio of Nm to N determines the values 
of the chromaticities contributed by mth chromatic 
sextupole pair. In fact, in the CSPO method we can 
directly use the chromaticities contributed by each 
chromatic sextupole pair as the decision variables instead 
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of indirectly using Nm and N. Besides, in Method 1 for 
each chromatic sextupole pair the ratio of the contributed 
horizontal chromaticity to the vertical is a constant equal 
to the reciprocal of the slope of the path in Fig. 1. In the 
CSPO method we can take away this constraint of the 
constant ratio. 

In the improved CSPO method, the number of decision 
variables is 2M. The decision variables can be written as 
(

1 2 1 2, , , , , ; , , , , ,x x mx Mx y y my My� � � � � � � ���� ��� � � � � � � ), where mx�
and

my�  are the horizontal and vertical chromaticities 
contributed by mth chromatic sextupole pair, respectively, 
and mx�  and my�  are nonnegative values. The two 
constraints for these variables are expressed as follows:  

1 2 1 0x x mx Mx x x� � � � � �� � �� � � � �� � � 	 � ,       (2) 

1 2 1 0y y my My y y� � � � �� � ���� � ��� � 	 � �

0

.       (3) 
We call this CSPO method the CSPO without 

chromaticity compensation path (Method 2). In the case 
that, for each chromatic sextupole pair, the following 
constraint is satisfied: 

1 0 1/ ( ) /mx my x x y y� � � � � �	 � � ,       (4) 
Method 2 is equivalent to the case of Method 1 with 
infinite large value of N. Because N is set to be a very 
large value when using Method 1, we can say that Method 
1 is a special case of Method 2. 
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Figure 7: DAs obtained by Method 2 (black line) and 
Method 1 (red line). 

We applied Method 2 to the DA optimization for the 
studied lattice, and the optimized DA is shown in Fig. 7 
(black line). For a comparison, the DA obtained at N = 
10,000 times using Method 1 is also shown in Fig. 7 (red 
line). In fact, these two DAs and the corresponding values 
of decision variables are almost the same. 

Method 3: Chromatic Sextupole Pair Optimizat-
ion with Fewest Variables 

We are familiar with the equations for chromaticity 
compensation by sextupoles: 

1 0
1 ( )

4x x xs ds� � � ��
�

� 	 �� ,       (5) 

1 0
1 ( )

4y y ys ds� � � ��
�

� 	 �� ,       (6) 

where ( )s�  is the sextupole strength, x� , y�  and �  are 
beta functions and dispersion function at the sextupole 
location, respectively. 

In fact, the recent application of AI algorithms is 
related to the right part of Equations 5 and 6 above, in 

which the decision variables are sextupole strengths ( )s� .
While the CSPO methods proposed here are related to the 
left part of the two equations, in which the decision 
variables are chromaticities. In other words, the two 
equations above connect the two kinds of numerical 
methods of optimizing chromatic sextupole pair related 
quantities and chromatic sextupole strengths, respectively, 
using AI algorithms. In the following, we will 
demonstrate the equivalence of the two kinds of methods. 

In the AI algorithm based numerical method in which 
the decision variables are sextupole strengths, the number 
of variables to be optimized is F = NSF NSD , since 
the other two variables are used to compensate the 
horizontal and vertical chromaticities to the desired values 
according to Equations 5 and 6. In the CSPO methods, the 
minimum number of variables to be optimized is also 
equal to F. In the Method 1 and Method 2, the decision 
variables are set to be nonnegative values. This constraint 
can be taken away, i.e., the decision variables can be 
negative. If so, the minimum number of chromatic 
sextupole pairs used in Method 1 is equal to F 1 (since 
there is an equality constraint, i.e., Equation 1), and in 
Method 2 it is equal to  (two equality 

constraints, i.e., Equation 2 and 3) , where  �  denotes 
rounding up to the nearest integer. We call the CSPO 
method in such cases the CSPO with fewest variables 
(Method 3). 

( 2) / 2F ��� ��

2

�� �

We used Method 3 to optimize the DA for the studied 
lattice (with F = 2). We chose two chromatic sextupole 
pairs ( ( 2) / 2F � 	� �� � ): (S1, S2) and (S3, S4). The 
decision variables are four chromaticities, and the number 
of variables to be optimized is 2 equal to F (the other two 
are determined by Equations 2 and 3). The DA obtained 
by Method 3 is shown in Fig. 8 (black line). The DA 
obtained by optimizing the sextupole strengths using the 
PSO algorithm is also shown in Fig. 8 (red line). We can 
see that two DAs obtained by optimizing chromatic 
sextupole pair related quantities (i.e. chromaticities) and 
chromatic sextupole strengths are almost the same, which 
demonstrates the equivalence of these two kinds of AI 
algorithm based numerical methods. 
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Figure 8: DAs obtained by Method 3 (black line) and 
optimizing sextupole strengths using PSO (red line). 
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